Spaces:
Runtime error
Runtime error
File size: 5,623 Bytes
8437114 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
#!/usr/bin/env python3 -u
# Copyright (c) Facebook, Inc. and its affiliates.
#
# This source code is licensed under the MIT license found in the
# LICENSE file in the root directory of this source tree.
"""
Sample from a trained LM; hacked fairseq-interactive
"""
from collections import namedtuple
import os
import ast
import numpy as np
from fairseq import checkpoint_utils, options, tasks, utils
import tqdm
Batch = namedtuple('Batch', 'ids src_tokens src_lengths')
Translation = namedtuple('Translation', 'src_str hypos pos_scores alignments')
def make_batches(lines, args, task, max_positions):
tokens = [
task.source_dictionary.encode_line(
src_str, add_if_not_exist=False
).long()
for src_str in lines
]
lengths = [t.numel() for t in tokens]
itr = task.get_batch_iterator(
dataset=task.build_dataset_for_inference(tokens, lengths),
max_tokens=args.dataset.max_tokens,
max_sentences=args.dataset.batch_size,
max_positions=max_positions,
ignore_invalid_inputs=args.dataset.skip_invalid_size_inputs_valid_test
).next_epoch_itr(shuffle=False)
for batch in itr:
yield Batch(
ids=batch['id'],
src_tokens=batch['net_input']['src_tokens'], src_lengths=batch['net_input']['src_lengths'],
)
def main(args):
arg_prompts = args.prompts
arg_output = args.output
arg_debug = args.debug
arg_sample_size = args.samples_per_prompt
try:
from fairseq.dataclass.utils import convert_namespace_to_omegaconf
args = convert_namespace_to_omegaconf(args)
except:
pass
# if args.max_tokens is None and args.max_sentences is None:
if args.common.seed is not None:
np.random.seed(args.common.seed)
utils.set_torch_seed(args.common.seed)
if args.generation.sampling:
args.generation.nbest = args.generation.beam = arg_sample_size
task = tasks.setup_task(args.task)
overrides = ast.literal_eval(args.common_eval.model_overrides)
models, _model_args = checkpoint_utils.load_model_ensemble(
args.common_eval.path.split(os.pathsep),
arg_overrides=overrides,
task=task,
suffix=getattr(args, "checkpoint_suffix", ""),
)
# Set dictionaries
src_dict = task.source_dictionary
tgt_dict = task.target_dictionary
# Optimize ensemble for generation
for model in models:
model.prepare_for_inference_(args)
model.cuda()
# Load alignment dictionary for unknown word replacement
# (None if no unknown word replacement, empty if no path to align dictionary)
align_dict = utils.load_align_dict(args.generation.replace_unk)
max_positions = utils.resolve_max_positions(
task.max_positions(),
*[model.max_positions() for model in models]
)
output_file = open(arg_output, 'w')
with open(arg_prompts, 'r') as fin:
lines = fin.readlines()
split = [x.split('|', 1) for x in lines]
seq_id = [x[0] for x in split]
prompts = [x[1] for x in split]
if args.generation.prefix_size >= 0:
prompts = [' '.join(l.split()[:args.generation.prefix_size])
for l in prompts]
if arg_debug:
prompts = prompts[:10]
generator = task.build_generator(models, args.generation)
start_id = 0
pbar = tqdm.tqdm(total=len(prompts))
for batch in make_batches(prompts, args, task, max_positions):
src_tokens = batch.src_tokens
src_lengths = batch.src_lengths
src_tokens = src_tokens.cuda()
src_lengths = src_lengths.cuda()
sample = {
'net_input': {
'src_tokens': src_tokens,
'src_lengths': src_lengths,
},
}
results = []
translations = task.inference_step(generator, models, sample)
for i, (id, hypos) in enumerate(zip(batch.ids.tolist(), translations)):
src_tokens_i = utils.strip_pad(src_tokens[i], tgt_dict.pad())
results.append((i + start_id, src_tokens_i, hypos))
# sort output to match input order
for id, src_tokens, hypos in sorted(results, key=lambda x: x[0]):
if src_dict is not None:
src_str = src_dict.string(
src_tokens, args.common_eval.post_process)
# Process top predictions
for hypo_id, hypo in enumerate(hypos):
_hypo_tokens, hypo_str, _alignment = utils.post_process_prediction(
hypo_tokens=hypo['tokens'].int().cpu(),
src_str=src_str,
alignment=hypo['alignment'],
align_dict=align_dict,
tgt_dict=tgt_dict,
remove_bpe=args.common_eval.post_process,
)
detok_hypo_str = hypo_str
utterance = detok_hypo_str
print(f'{seq_id[id]}__{hypo_id}|{utterance}', file=output_file)
pbar.update(1)
start_id += len(results)
# output_file.close()
def cli_main():
parser = options.get_interactive_generation_parser()
parser.add_argument('--prompts', type=str, default=None, required=True)
parser.add_argument('--output', type=str, default=None, required=True)
parser.add_argument('--debug', action='store_true')
parser.add_argument('--samples-per-prompt', type=int, default=1)
args = options.parse_args_and_arch(parser)
np.random.seed(args.seed)
utils.set_torch_seed(args.seed)
main(args)
if __name__ == '__main__':
cli_main()
|