Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
File size: 39,560 Bytes
5233c22 9346f1c 5233c22 4596a70 8c49cb6 5233c22 2a73469 5233c22 d084b26 5233c22 a8c346c 5233c22 a2790cb 5233c22 72a0f0f 5233c22 aa7c3f4 5233c22 f5876a7 5233c22 adb0416 5233c22 8c49cb6 5233c22 8c49cb6 ef5b51c 5233c22 748e305 5233c22 748e305 5233c22 fc1e99b 5233c22 fc1e99b 5233c22 fc1e99b 8c49cb6 5233c22 ab6f548 f2bc0a5 5233c22 0227006 5233c22 b323764 5233c22 217b585 5233c22 12cea14 5233c22 6e8f400 8cb7546 5233c22 d1625d7 5233c22 d16cee2 5233c22 a8c346c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 |
import os
import json
import numpy as np
import pandas as pd
import gradio as gr
from datetime import datetime, timedelta
from huggingface_hub.hf_api import ModelInfo
from transformers import AutoConfig, AutoTokenizer
from huggingface_hub import HfApi, hf_hub_download, ModelCard
from apscheduler.schedulers.background import BackgroundScheduler
################################################################################
# GLOBALS & CONSTANTS
################################################################################
OWNER = "OALL"
REPO_ID = f"{OWNER}/Open-Arabic-LLM-Leaderboard-v2-exp"
RESULTS_REPO_ID = f"{OWNER}/v2_results"
REQUESTS_REPO_ID = f"{OWNER}/requests_v2"
# Global HF API instance (set once)
hf_api_token = os.environ.get('HF_API_TOKEN', None)
API = HfApi(token=hf_api_token)
TASKS = [
("community|alghafa:_average|0", "acc_norm", "AlGhafa"),
("community|arabic_mmlu:_average|0", "acc_norm", "ArabicMMLU"),
("community|arabic_exams|0", "acc_norm", "EXAMS"),
("community|madinah_qa:_average|0", "acc_norm", "MadinahQA"),
("community|aratrust:_average|0", "acc_norm", "AraTrust"),
("community|alrage_qa|0", "llm_as_judge", "ALRAGE"),
("community|arabic_mmlu_ht:_average|0", "acc_norm", "ArbMMLU-HT"),
]
MODEL_TYPE_TO_EMOJI = {
"🟢 : pretrained": "🟢",
"🟩 : continuously pretrained": "🟩",
"💬 : chat models (RLHF, DPO, IFT, ...)": "💬",
"🔶 : fine-tuned on domain-specific datasets": "🔶",
"🤝 : base merges and merges": "🤝",
"Missing": "?",
}
HEADER = """
<img src="https://raw.githubusercontent.com/alielfilali01/OALL-assets/main/TITLE.png" style="width:30%;display:block;margin-left:auto;margin-right:auto;border-radius:15px;">
"""
BOTTOM_LOGO = """<img src="https://raw.githubusercontent.com/alielfilali01/OALL-assets/main/BOTTOM.png" style="width:50%;display:block;margin-left:auto;margin-right:auto;border-radius:15px;">"""
SUBMISSION_TEXT = """
# Submit Your Model for Evaluation 🌴
**The Open Arabic LLM Leaderboard** aims to help you evaluate and compare the performance of Arabic Large Language Models.
When you submit a model on this page, it is automatically evaluated on a set of arabic native benchmarks ([find here](https://github.com/huggingface/lighteval/blob/main/examples/tasks/OALL_v2_tasks.txt)) with one additional human-translated version of [MMLU](https://arxiv.org/abs/2009.03300).
The GPU used for evaluation is operated with the support of __[Technology Innovation Institute (TII)](https://www.tii.ae/)__.
More details about the benchmarks and the evaluation process is provided on the “About” section below.
Find the first version of the leaderboard hosted as Legacy in this [Space](https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard-v1).
"""
ABOUT_SECTION = """
## About
While outstanding LLM models are being released competitively, most of them are centered on English and are familiar with the English cultural sphere. We operate the Open Arabic LLM Leaderboard (OALL), to evaluate models that reflect the characteristics of the Arabic language, culture and heritage. Through this, we hope that users can conveniently use the leaderboard, participate, and contribute to the advancement of research in the Arab region 🔥.
### Icons & Model types
🟢 : `pretrained`
🟩 : `continuously pretrained`
💬 : `chat models (RLHF, DPO, IFT, ...)`
🔶 : `fine-tuned on domain-specific datasets`
🤝 : `base merges and moerges`
### Notes:
- We reserve the right to correct any incorrect tags or icons after manual verification to ensure the accuracy and reliability of the leaderboard. This helps maintain the integrity and trustworthiness of the platform.
- Some models may be flagged as “Subjects of Caution” by the community. These models might have used the evaluation set for training, attempted to manipulate rankings, or raised ethical concerns. Models deemed as such may face restricted visibility or removal from the leaderboard. Users are advised to exercise discretion when interpreting rankings.
- The leaderboard automatically hides models that were submitted, evaluated, and subsequently made private or gated post-evaluation. This platform is designed for **“open”** models that benefit the wider community. If you intend to restrict your model’s accessibility after using the leaderboard’s resources or exploit the platform solely for personal gains, please refrain from submitting. Violators may face bans on their usernames and/or organization IDs from future submissions.
- The leaderboard no longer accepts models in **float32** precision except under special circumstances. If you are the developer of a float32 model and believe it deserves inclusion, please reach out to us.
- To ensure fair and equitable access to leaderboard resources, all usernames and organization IDs are limited to **5 submissions per week**. This policy minimizes spamming, encourages thoughtful participation, and allows everyone in the community to benefit from the platform.
By adhering to these guidelines, we aim to foster a fair, collaborative, and transparent environment for evaluating and advancing open models for the arabic/arabic-interested communities.
### How it works
📈 We evaluate models using [LightEval](https://github.com/huggingface/lighteval), a unified and straightforward framework from the HuggingFace Eval Team to test and assess causal language models on a large number of different evaluation tasks.
To ensure a fair and unbiased assessment of the models' true capabilities, all evaluations are conducted in zero-shot settings `0-shots`. This approach eliminates any potential advantage from task-specific fine-tuning, providing a clear indication of how well the models can generalize to new tasks.
Also, given the nature of the tasks, which include multiple-choice questions, the leaderboard primarily uses normalized log likelihood accuracy `loglikelihood_acc_norm` for all tasks.
Please, consider reaching out to us through the discussions tab if you are working on benchmarks for Arabic LLMs and willing to see them on this leaderboard as well. Your benchmark might change the whole game for Arabic models !
### Details and Logs
- Detailed numerical results in the `results` OALL dataset: https://huggingface.co/datasets/OALL/v2_results
- Community queries and running status in the `requests` OALL dataset: https://huggingface.co/datasets/OALL/requests_v2
### More resources
For evaluations of chat models using 3C3H on generative tasks benchmarks, please refer to the [AraGen-Leaderboard](https://huggingface.co/spaces/inceptionai/AraGen-Leaderboard).
If you still have questions, you can check our FAQ [here](https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard/discussions/15)!
"""
CITATION_BUTTON_LABEL = """
Copy the following snippet to cite these results
"""
CITATION_BUTTON_TEXT = """
@misc{OALL-2,
author = {El Filali, Ali and ALOUI, Manel and Husaain, Tarique and Alzubaidi, Ahmed and Boussaha, Basma El Amel and Cojocaru, Ruxandra and Fourrier, Clémentine and Habib, Nathan and Hacid, Hakim},
title = {Open Arabic LLM Leaderboard 2},
year = {2025},
publisher = {OALL},
howpublished = {https://huggingface.co/spaces/OALL/Open-Arabic-LLM-Leaderboard}
}
"""
################################################################################
# UTILITY & HELPER FUNCTIONS
################################################################################
def model_hyperlink(model_name):
link = f"https://huggingface.co/{model_name}"
# return f'<a target="_blank" href="{link}" style="color: var(--link-text-color); text-decoration: underline;text-decoration-style: dotted;">{model_name}</a>'
# return f'[{model_name}]({link})' # WHYYYYYYYY It is not working !!!???
return f"{model_name}"
def restart_space():
"""Restart the Gradio space periodically."""
API.restart_space(repo_id=REPO_ID)
def unify_precision(raw_precision: str) -> str:
"""
Map raw precision strings (e.g. 'torch.float16', 'fp16', 'float16')
to canonical forms: 'float16', 'float32', 'bfloat16', '8bit', '4bit', 'Missing'.
"""
if not raw_precision or raw_precision.lower() in ["missing", "unk", "none"]:
return "Missing"
p = raw_precision.lower()
if p in ["torch.float16", "float16", "fp16"]:
return "float16"
if p in ["torch.float32", "float32", "fp32"]:
return "float32"
if p in ["torch.bfloat16", "bfloat16", "bf16"]:
return "bfloat16"
if p == "8bit":
return "8bit"
if p == "4bit":
return "4bit"
return "Missing"
def load_requests(status_folder: str) -> pd.DataFrame:
"""
Load all .json requests from REQUESTS_REPO_ID, filtering by 'status' == status_folder.
"""
df_out = []
try:
files_info = API.list_repo_files(
repo_id=REQUESTS_REPO_ID,
repo_type="dataset",
token=hf_api_token
)
json_files = [f for f in files_info if f.endswith(".json")]
except Exception as e:
print(f"Error listing files in {REQUESTS_REPO_ID}: {e}")
return pd.DataFrame()
for path in json_files:
try:
local_path = hf_hub_download(
repo_id=REQUESTS_REPO_ID,
filename=path,
repo_type="dataset",
token=hf_api_token
)
with open(local_path, "r", encoding="utf-8") as f:
req = json.load(f)
except Exception as e:
print(f"Error loading {path}: {e}")
continue
if str(req.get("status", "")).strip().lower() == status_folder.lower():
df_out.append(req)
return pd.DataFrame(df_out)
def load_all_requests() -> pd.DataFrame:
"""
Load *all* requests from the dataset (pending, finished, failed, etc.).
Returns a single DataFrame with columns from all requests.
"""
df_out = []
try:
files_info = API.list_repo_files(
repo_id=REQUESTS_REPO_ID,
repo_type="dataset",
token=hf_api_token
)
json_files = [f for f in files_info if f.endswith(".json")]
except Exception as e:
print(f"Error listing files in {REQUESTS_REPO_ID}: {e}")
return pd.DataFrame()
for path in json_files:
try:
local_path = hf_hub_download(
repo_id=REQUESTS_REPO_ID,
filename=path,
repo_type="dataset",
token=hf_api_token
)
with open(local_path, "r", encoding="utf-8") as f:
req = json.load(f)
df_out.append(req)
except Exception as e:
print(f"Error loading {path}: {e}")
continue
return pd.DataFrame(df_out)
def already_in_queue(df_pending: pd.DataFrame, model_name: str, revision: str, precision: str) -> bool:
"""
Check if (model, revision, precision) is already in the 'pending' queue.
"""
if df_pending.empty:
return False
matched = df_pending[
(df_pending["model"] == model_name)
& (df_pending["revision"] == revision)
& (df_pending["precision"] == unify_precision(precision))
]
return not matched.empty
def get_model_size(model_info: ModelInfo, precision: str) -> float:
"""
Return approximate model parameter size in billions, if safetensors info is available.
Return 0 if unknown.
For GPTQ, we do a small multiplier to reflect the extra bits, etc.
"""
try:
param_bytes = model_info.safetensors.get("total", 0)
model_size = round(param_bytes / 1e9, 3)
except (AttributeError, TypeError):
return 0.0
if "gptq" in model_info.modelId.lower():
return model_size * 8
return model_size
def parse_datetime(dt_str: str) -> datetime:
"""
Safely parse an ISO datetime string into a Python datetime object.
"""
try:
return datetime.fromisoformat(dt_str.replace("Z", ""))
except Exception:
return datetime.min
################################################################################
# SCOREBOARD LOADING & DISPLAY
################################################################################
def load_scoreboard() -> pd.DataFrame:
"""
1) Reads JSON "results_*.json" from RESULTS_REPO_ID to collect scores.
2) Combines with "finished" requests data for license, revision, etc.
3) Removes any model that is no longer public or accessible.
4) Returns a DataFrame ready for display & filtering.
Only models with finished evaluations are kept.
"""
# Step A: Get scoreboard files from the results dataset
try:
files_info = API.list_repo_files(
repo_id=RESULTS_REPO_ID,
repo_type="dataset",
token=hf_api_token
)
except Exception as e:
print(f"Error listing scoreboard files in {RESULTS_REPO_ID}: {e}")
return pd.DataFrame()
candidate_json_paths = [
path for path in files_info
if path.endswith(".json") and len(path.split("/")) == 3 and path.split("/")[2].startswith("results_")
]
rows = []
# Step B: Read each scoreboard file
for file_path in candidate_json_paths:
try:
local_file = hf_hub_download(
repo_id=RESULTS_REPO_ID,
filename=file_path,
repo_type="dataset",
token=hf_api_token
)
with open(local_file, "r", encoding="utf-8") as f:
data = json.load(f)
except Exception as e:
print(f"Error loading scoreboard file {file_path}: {e}")
continue
config_general = data.get("config_general", {})
results_block = data.get("results", {})
model_name = config_general.get("model_name", "UNK")
scoreboard_precision = unify_precision(config_general.get("model_dtype", "Missing"))
# To be consistent with submission logic:
if scoreboard_precision == "Missing":
scoreboard_precision = "UNK"
scoreboard_model_type = config_general.get("model_type", "Missing")
row_dict = {
"Model Name": model_name,
"Revision": "Missing", # We'll fill from requests
"License": "Missing", # We'll fill from requests
"Precision": scoreboard_precision,
"Full Type": scoreboard_model_type,
"Model Size": 0.0, # We'll fill from requests
"Hub ❤️": 0, # We'll fill from requests
}
# Fill tasks
for (task_key, metric_field, display_name) in TASKS:
val = np.nan
if task_key in results_block:
subd = results_block[task_key]
if isinstance(subd, dict) and metric_field in subd:
val = subd[metric_field]
row_dict[display_name] = val
rows.append(row_dict)
df = pd.DataFrame(rows)
if df.empty:
base_cols = [
"Model Name","Revision","License",
"Precision","Full Type","Model Size","Hub ❤️"
]
task_names = [t[2] for t in TASKS]
return pd.DataFrame(columns=base_cols + task_names)
# Step C: Convert tasks to numeric & multiply by 100
task_cols = [t[2] for t in TASKS if t[2] in df.columns]
df[task_cols] = df[task_cols].apply(pd.to_numeric, errors="coerce")
for c in task_cols:
df[c] = (df[c] * 100).round(2)
# Step D: Compute average
if task_cols:
df["Average ⬆️"] = df[task_cols].mean(axis=1).round(2)
else:
df["Average ⬆️"] = np.nan
# Step E: Overwrite scoreboard data with "finished" requests (except for Precision)
df_finished = load_requests("finished")
if not df_finished.empty:
df_finished["precision"] = df_finished["precision"].apply(unify_precision)
df_finished["license"] = df_finished["license"].apply(
lambda x: ", ".join(x) if isinstance(x, list) else str(x)
)
df_finished["model_type"] = df_finished["model_type"].apply(
lambda x: ", ".join(x) if isinstance(x, list) else str(x)
)
# Group by model name and precision to correctly distinguish multiple submissions
dff_grouped = df_finished.groupby(["model", "precision"], as_index=False).last()
request_map = {}
for _, row_ in dff_grouped.iterrows():
key = f"{row_['model']}__{row_['precision']}"
request_map[key] = {
"license": row_["license"],
"revision": row_["revision"],
"precision": row_["precision"],
"model_type":row_["model_type"],
"params": row_["params"],
"likes": row_["likes"]
}
def apply_request_info(row_):
key = f"{row_['Model Name']}__{row_['Precision']}"
if key in request_map:
row_["License"] = request_map[key]["license"]
row_["Revision"] = request_map[key]["revision"]
# Do NOT update "Precision": keep the value from the results file.
row_["Full Type"] = request_map[key]["model_type"]
row_["Model Size"] = request_map[key]["params"]
row_["Hub ❤️"] = request_map[key]["likes"]
return row_
df = df.apply(apply_request_info, axis=1)
# Step E2: Remove rows that do not have finished request info (i.e. Revision is still "Missing")
df = df[df["Revision"] != "Missing"]
# Step F: Remove any model not public
remove_idx = []
for idx, row in df.iterrows():
model_name = row["Model Name"]
if model_name == "UNK":
remove_idx.append(idx)
continue
try:
API.model_info(model_name)
except Exception:
remove_idx.append(idx)
df.drop(remove_idx, inplace=True)
df.reset_index(drop=True, inplace=True)
# Step G: Sort scoreboard
df = df.sort_values(by="Average ⬆️", ascending=False).reset_index(drop=True)
# Step H: Insert ranking & create a "Model Size Filter" for slider usage
df.insert(0, "Rank", range(1, len(df) + 1))
df["Model Size Filter"] = df["Model Size"]
# Step I: Short label for the model type
def map_type_to_emoji(full_str):
if not isinstance(full_str, str):
return "Missing"
return MODEL_TYPE_TO_EMOJI.get(full_str.strip(), full_str.strip())
df["T"] = df["Full Type"].apply(map_type_to_emoji)
# At this point, convert "Model Name" to a clickable link
df["Model Name"] = df["Model Name"].apply(model_hyperlink)
# Reorder columns
final_cols = ["Rank", "T", "Model Name", "Average ⬆️"] + task_cols
remainder = ["Model Size", "Hub ❤️", "License", "Precision", "Revision", "Model Size Filter", "Full Type"]
for rc in remainder:
if rc not in final_cols and rc in df.columns:
final_cols.append(rc)
return df[final_cols]
################################################################################
# SUBMISSION LOGIC
################################################################################
def check_model_card(repo_id: str) -> (bool, str):
"""Check if model card is present, has a license, and is not too short."""
try:
card = ModelCard.load(repo_id)
except Exception:
return (False, "No model card found. Please add a README.md describing your model and license.")
if card.data.license is None and not ("license_name" in card.data and "license_link" in card.data):
return (False, "No license metadata found in the model card.")
if len(card.text) < 200:
return (False, "Model card is too short (<200 chars). Please add more details.")
return (True, "")
def is_model_on_hub(model_name, revision, token=None, trust_remote_code=False, test_tokenizer=True):
"""Check if the model & tokenizer can be loaded from the Hub."""
try:
config = AutoConfig.from_pretrained(
model_name,
revision=revision,
trust_remote_code=trust_remote_code,
token=token
)
except ValueError:
return (False, "requires `trust_remote_code=True`. Not automatically allowed.", None)
except Exception as e:
return (False, f"not loadable from hub: {str(e)}", None)
if test_tokenizer:
try:
_ = AutoTokenizer.from_pretrained(
model_name,
revision=revision,
trust_remote_code=trust_remote_code,
token=token
)
except Exception as e:
return (False, f"tokenizer not loadable: {str(e)}", None)
return (True, "", config)
def check_org_threshold(org_name: str) -> (bool, str):
"""
Each org can only submit 5 models in the last 7 days.
Return (True, "") if allowed. Otherwise, (False, "error message").
"""
df_all = load_all_requests()
if df_all.empty:
return (True, "")
def get_org(m):
try:
return m.split("/")[0]
except:
return m
df_all["org_name"] = df_all["model"].apply(get_org)
df_org = df_all[df_all["org_name"] == org_name].copy()
if df_org.empty:
return (True, "")
df_org["datetime"] = df_org["submitted_time"].apply(parse_datetime)
df_org.dropna(subset=["datetime"], inplace=True)
now = datetime.utcnow()
week_ago = now - timedelta(days=7)
df_recent = df_org[df_org["datetime"] >= week_ago]
if len(df_recent) >= 5:
df_recent_sorted = df_recent.sort_values(by="datetime")
earliest = df_recent_sorted.iloc[0]["datetime"]
next_ok = earliest + timedelta(days=7)
msg_next = next_ok.isoformat(timespec="seconds") + "Z"
return (
False,
f"Your org '{org_name}' has reached the 5-submissions-per-week limit. You can submit again after {msg_next}."
)
return (True, "")
def submit_model(
model_name: str,
base_model: str,
revision: str,
precision: str,
weight_type: str,
model_type: str,
chat_template: str
):
# -------------------------------------------------------------------------
# 0) Strip inputs to avoid trailing or leading spaces
# -------------------------------------------------------------------------
model_name = model_name.strip()
base_model = base_model.strip()
revision = revision.strip()
precision = precision.strip()
if not model_name:
return "**Error**: Model name cannot be empty (use 'org/model')."
if not revision:
revision = "main"
# 1) Check model card
card_ok, card_msg = check_model_card(model_name)
if not card_ok:
return f"**Error**: {card_msg}"
# 2) If adapter/delta, check base_model
if weight_type.lower() in ["adapter", "delta"]:
if not base_model:
return "**Error**: For adapter/delta, you must provide a valid `base_model`."
ok_base, base_err, _ = is_model_on_hub(base_model, revision, hf_api_token, trust_remote_code=True, test_tokenizer=True)
if not ok_base:
return f"**Error**: Base model '{base_model}' {base_err}"
else:
ok_model, model_err, _ = is_model_on_hub(model_name, revision, hf_api_token, trust_remote_code=True, test_tokenizer=True)
if not ok_model:
return f"**Error**: Model '{model_name}' {model_err}"
# 3) Retrieve ModelInfo
try:
info = API.model_info(model_name, revision=revision, token=hf_api_token)
except Exception as e:
return f"**Error**: Could not fetch model info. {str(e)}"
model_license = info.card_data.license
model_likes = info.likes or 0
model_private = bool(getattr(info, "private", False))
# 4) Check duplicates
df_pending = load_requests("pending")
df_finished = load_requests("finished")
if already_in_queue(df_finished, model_name, revision, precision):
return f"**Warning**: '{model_name}' with (rev='{revision}', prec='{precision}') has already been evaluated (status FINISHED)."
elif already_in_queue(df_pending, model_name, revision, precision):
return f"**Warning**: '{model_name}' with (rev='{revision}', prec='{precision}') is already in PENDING."
# 5) Check threshold
try:
org = model_name.split("/")[0]
except:
org = model_name
under_threshold, message = check_org_threshold(org)
if not under_threshold:
return f"**Error**: {message}"
precision_final = unify_precision(precision)
if precision_final == "Missing":
precision_final = "UNK"
model_params = get_model_size(model_info=info, precision=precision)
current_time = datetime.utcnow().isoformat() + "Z"
# Convert chat_template input to boolean: True if "Yes", False if "No"
chat_template_bool = True if chat_template.strip().lower() == "yes" else False
submission = {
"model": model_name,
"base_model": base_model.strip(),
"revision": revision,
"precision": precision_final,
"weight_type": weight_type,
"status": "PENDING",
"submitted_time": current_time,
"model_type": model_type,
"likes": model_likes,
"params": model_params,
"license": model_license,
"private": model_private,
"job_id": None,
"job_start_time": None,
"chat_template": chat_template_bool
}
# Must be "org/repo"
try:
org_, repo_id = model_name.split("/")
except ValueError:
return "**Error**: Please specify model as 'org/model'. Note that `org` can be `username` as well."
private_str = "True" if model_private else "False"
file_path_in_repo = f"{org_}/{repo_id}_eval_request_{private_str}_{precision_final}_{weight_type}.json"
# 6) Upload submission
try:
API.upload_file(
path_or_fileobj=json.dumps(submission, indent=2).encode("utf-8"),
path_in_repo=file_path_in_repo,
repo_id=REQUESTS_REPO_ID,
repo_type="dataset",
token=hf_api_token,
commit_message=f"Add {model_name} to eval queue"
)
except Exception as e:
return f"**Error**: Could not upload to '{REQUESTS_REPO_ID}': {str(e)}"
return f"**Success**: Model '{model_name}' submitted for evaluation!"
################################################################################
# MAIN GRADIO APP
################################################################################
def main():
# Periodically restart the Space (e.g., every 30 minutes)
scheduler = BackgroundScheduler()
scheduler.add_job(restart_space, "interval", hours=1)
scheduler.start()
df_tasks = load_scoreboard()
# Prepare filter choices from 'finished' requests
df_finished = load_requests("finished")
if not df_finished.empty:
df_finished["precision"] = df_finished["precision"].apply(unify_precision)
df_finished["license"] = df_finished["license"].apply(
lambda x: ", ".join(x) if isinstance(x, list) else str(x)
)
df_finished["model_type"] = df_finished["model_type"].apply(
lambda x: ", ".join(x) if isinstance(x, list) else str(x)
)
precision_options = sorted(df_finished["precision"].dropna().unique().tolist())
license_options = sorted(df_finished["license"].dropna().unique().tolist())
model_type_opts = sorted(df_finished["model_type"].dropna().unique().tolist())
for lst in [precision_options, license_options, model_type_opts]:
if "Missing" not in lst:
lst.append("Missing")
else:
precision_options = ["float16", "bfloat16", "8bit", "4bit", "Missing"]
license_options = ["Missing"]
model_type_opts = ["Missing"]
if not df_tasks.empty:
min_model_size = int(df_tasks["Model Size Filter"].min())
max_model_size = int(df_tasks["Model Size Filter"].max())
else:
min_model_size, max_model_size = 0, 1000
all_columns = df_tasks.columns.tolist() if not df_tasks.empty else []
# We don't want to show "Model Size Filter" or "Full Type" directly
hidden_cols = {"Model Size Filter", "Full Type"}
for h in hidden_cols:
if h in all_columns:
all_columns.remove(h)
task_cols = [t[2] for t in TASKS if t[2] in df_tasks.columns]
default_cols = ["Rank", "T", "Model Name", "Average ⬆️"] + task_cols
default_cols = [c for c in default_cols if c in all_columns]
with gr.Blocks() as demo:
gr.HTML(HEADER)
with gr.Tabs():
####################################################################
# TAB 1: LLM Leaderboard
####################################################################
with gr.Tab("🏅 LLM Leaderboard"):
with gr.Row():
search_box = gr.Textbox(
label="Search",
placeholder="Search for models...",
interactive=True
)
with gr.Row():
col_selector = gr.CheckboxGroup(
choices=all_columns,
value=default_cols,
label="Select columns to display"
)
t_filter = gr.CheckboxGroup(
choices=model_type_opts,
value=model_type_opts.copy(),
label="Filter by Model Type"
)
with gr.Row():
license_filter = gr.CheckboxGroup(
choices=license_options,
value=license_options.copy(),
label="Filter by License"
)
precision_filter = gr.CheckboxGroup(
choices=precision_options,
value=precision_options.copy(),
label="Filter by Precision"
)
with gr.Row():
size_min_slider = gr.Slider(
minimum=min_model_size,
maximum=max_model_size,
value=min_model_size,
step=1,
label="Minimum Model Size (params)",
interactive=True
)
size_max_slider = gr.Slider(
minimum=min_model_size,
maximum=max_model_size,
value=max_model_size,
step=1,
label="Maximum Model Size (params)",
interactive=True
)
leaderboard = gr.Dataframe(
value=df_tasks[default_cols] if not df_tasks.empty else pd.DataFrame(columns=default_cols),
interactive=False
)
def filter_by_full_type(dff, selected_full_types):
incl_missing = "Missing" in selected_full_types
if incl_missing:
return dff[
(dff["Full Type"].isin(selected_full_types))
| (dff["Full Type"].isna())
| (dff["Full Type"] == "")
| (dff["Full Type"] == "Missing")
]
else:
return dff[dff["Full Type"].isin(selected_full_types)]
def filter_leaderboard(
search_query,
selected_cols,
t_filter_values,
lic_filter_values,
prec_filter_values,
min_sz,
max_sz
):
dff = df_tasks.copy()
# 1) Filter by size
if min_sz > max_sz:
min_sz, max_sz = max_sz, min_sz
dff = dff[(dff["Model Size Filter"] >= min_sz+1) & (dff["Model Size Filter"] <= max_sz+1)]
# 2) Search by name
dff["plain_name"] = dff["Model Name"].str.replace(r'<.*?>', '', regex=True)
if search_query:
dff = dff[dff["plain_name"].str.contains(search_query, case=False, na=False)]
# 3) Filter by model type
if t_filter_values:
dff = filter_by_full_type(dff, t_filter_values)
# 4) Filter by license
if lic_filter_values:
incl_missing = "Missing" in lic_filter_values
chosen = [l for l in lic_filter_values if l != "Missing"]
if incl_missing:
dff = dff[
dff["License"].isin(chosen)
| (dff["License"] == "Missing")
| (dff["License"].isna())
]
else:
dff = dff[dff["License"].isin(chosen)]
# 5) Filter by precision
if prec_filter_values:
incl_missing = "Missing" in prec_filter_values
chosen = [p for p in prec_filter_values if p != "Missing"]
if incl_missing:
dff = dff[
dff["Precision"].isin(chosen)
| (dff["Precision"].isna())
| (dff["Precision"] == "Missing")
| (dff["Precision"] == "UNK")
]
else:
dff = dff[dff["Precision"].isin(chosen)]
dff.drop(columns=["plain_name"], inplace=True, errors="ignore")
final_cols = [col for col in dff.columns if col in selected_cols]
return dff[final_cols]
filter_inputs = [
search_box, col_selector, t_filter,
license_filter, precision_filter,
size_min_slider, size_max_slider
]
search_box.submit(filter_leaderboard, inputs=filter_inputs, outputs=leaderboard)
for comp in filter_inputs:
comp.change(filter_leaderboard, inputs=filter_inputs, outputs=leaderboard)
####################################################################
# TAB 2: Submit here
####################################################################
with gr.Tab("🚀 Submit here!"):
gr.Markdown(SUBMISSION_TEXT)
with gr.Row():
model_name_box = gr.Textbox(
label="Model Name",
placeholder="myorg/mymodel",
interactive=True
)
revision_box = gr.Textbox(
label="Revision Commit",
placeholder="main",
value="main",
interactive=True
)
with gr.Row():
model_type_box = gr.Dropdown(
label="Model Type",
choices=list(MODEL_TYPE_TO_EMOJI.keys()),
value="💬 : chat models (RLHF, DPO, IFT, ...)",
interactive=True
)
weight_type_box = gr.Dropdown(
label="Weight Type",
choices=["Original", "Adapter", "Delta"],
value="Original",
interactive=True
)
with gr.Row():
precision_box = gr.Dropdown(
label="Precision",
choices=["float16", "bfloat16", "8bit", "4bit"],
value="bfloat16",
interactive=True
)
base_model_box = gr.Textbox(
label="Base Model (if adapter or delta weights)",
placeholder="(Optional) e.g. myorg/base-model",
interactive=True
)
with gr.Row():
chat_template_box = gr.Radio(
label="Evaluate using chat-template?",
choices=["Yes", "No"],
value="No",
interactive=True
)
submit_btn = gr.Button("Submit Model")
submit_out = gr.Markdown()
submit_btn.click(
fn=submit_model,
inputs=[model_name_box, base_model_box, revision_box, precision_box, weight_type_box, model_type_box, chat_template_box],
outputs=submit_out
)
df_pending = load_requests("pending")
df_running = load_requests("running")
df_finished2= load_requests("finished")
df_failed = load_requests("failed")
gr.Markdown("## Evaluation Status")
with gr.Accordion(f"Pending Evaluations ({len(df_pending)})", open=False):
if not df_pending.empty:
gr.Dataframe(df_pending)
else:
gr.Markdown("No pending evaluations.")
with gr.Accordion(f"Running Evaluations ({len(df_running)})", open=False):
if not df_running.empty:
gr.Dataframe(df_running)
else:
gr.Markdown("No running evaluations.")
with gr.Accordion(f"Finished Evaluations ({len(df_finished2)})", open=False):
if not df_finished2.empty:
gr.Dataframe(df_finished2)
else:
gr.Markdown("No finished evaluations.")
with gr.Accordion(f"Failed Evaluations ({len(df_failed)})", open=False):
if not df_failed.empty:
gr.Dataframe(df_failed)
else:
gr.Markdown("No failed evaluations.")
gr.Markdown(ABOUT_SECTION)
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_box = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=9,
elem_id="citation-button",
show_copy_button=True
)
gr.HTML(BOTTOM_LOGO)
demo.queue(default_concurrency_limit=40).launch()
if __name__ == "__main__":
main()
|