Spaces:
Runtime error
Runtime error
File size: 6,607 Bytes
04c25c5 0c3f7c7 04c25c5 9b9128d 0c3f7c7 1d73b44 0c3f7c7 d753c71 e9b47ff d786de6 e9b47ff 8686afb e9b47ff 19ac70e 0ead5c5 19ac70e 0ead5c5 8686afb 0ead5c5 e9b47ff 1d73b44 fe8c2db 369dc1f 2a37133 04c25c5 d753c71 32f8fd0 d753c71 32f8fd0 04c25c5 fe8c2db 04c25c5 49e3627 04c25c5 0c3f7c7 d7942b7 fe8c2db 04c25c5 34a59de 6b083b8 04c25c5 71a4c63 6b083b8 04c25c5 fe8c2db 6b083b8 fe8c2db 0c3f7c7 71a4c63 0c3f7c7 8debc62 53848ee fe8c2db 8debc62 d7942b7 d0d4c9d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import gradio as gr
from gradio_client import Client
from huggingface_hub import InferenceClient
import random
ss_client = Client("https://omnibus-html-image-current-tab.hf.space/")
models=[
"google/gemma-7b",
"google/gemma-7b-it",
"google/gemma-2b",
"google/gemma-2b-it"
]
clients=[
InferenceClient(models[0]),
InferenceClient(models[1]),
InferenceClient(models[2]),
InferenceClient(models[3]),
]
def compress_history(history,client_choice,seed,temp,tokens,top_p,rep_p):
client=clients[int(client_choice)-1]
COMPRESS_HISTORY="""You are an Information Summarizer Agent. Your duty is to summarize the following information into a more concise format with far less words.
Retain all the main points and provide a brief and concise summary of the conversation.
Converstion:
{history}"""
print("COMPRESSING")
formatted_prompt=f"{COMPRESS_HISTORY.format(history=history)}"
generate_kwargs = dict(
temperature=temp,
max_new_tokens=1024,
top_p=top_p,
repetition_penalty=rep_p,
do_sample=True,
seed=seed,
)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
return output
def format_prompt(message, history):
prompt = ""
if history:
#<start_of_turn>userHow does the brain work?<end_of_turn><start_of_turn>model
for user_prompt, bot_response in history:
prompt += f"{user_prompt}\n"
print(prompt)
prompt += f"{bot_response}\n"
print(prompt)
prompt += f"<start_of_turn>user{message}<end_of_turn><start_of_turn>model"
print(prompt)
return prompt
def chat_inf(system_prompt,prompt,history,client_choice,seed,temp,tokens,top_p,rep_p):
#token max=8192
client=clients[int(client_choice)-1]
if not history:
history = []
hist_len=0
if history:
hist_len=len(history)
print(hist_len)
if hist_len>4000:
yield [(prompt,"Wait. I need to compress our Chat history...")]
history=compress_history(history,client_choice,seed,temp,tokens,top_p,rep_p)
yield [(prompt,"History has been compressed, processing request...")]
generate_kwargs = dict(
temperature=temp,
max_new_tokens=tokens,
top_p=top_p,
repetition_penalty=rep_p,
do_sample=True,
seed=seed,
)
#formatted_prompt=prompt
formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history)
stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
output += response.token.text
yield [(prompt,output)]
history.append((prompt,output))
yield history
def get_screenshot(chat: list,height=5000,width=600,chatblock=[],theme="light",wait=3000,header=True):
print(chatblock)
tog = 0
if chatblock:
tog = 3
result = ss_client.predict(str(chat),height,width,chatblock,header,theme,wait,api_name="/run_script")
out = f'https://omnibus-html-image-current-tab.hf.space/file={result[tog]}'
print(out)
return out
def clear_fn():
return None,None,None
rand_val=random.randint(1,1111111111111111)
def check_rand(inp,val):
if inp==True:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=random.randint(1,1111111111111111))
else:
return gr.Slider(label="Seed", minimum=1, maximum=1111111111111111, value=int(val))
with gr.Blocks() as app:
gr.HTML("""<center><h1 style='font-size:xx-large;'>Google Gemma Models</h1><br><h3>running on Huggingface Inference Client</h3><br><h7>EXPERIMENTAL""")
chat_b = gr.Chatbot(height=500)
with gr.Group():
with gr.Row():
with gr.Column(scale=3):
inp = gr.Textbox(label="Prompt")
sys_inp = gr.Textbox(label="System Prompt (optional)")
with gr.Row():
with gr.Column(scale=2):
btn = gr.Button("Chat")
with gr.Column(scale=1):
with gr.Group():
stop_btn=gr.Button("Stop")
clear_btn=gr.Button("Clear")
client_choice=gr.Dropdown(label="Models",type='index',choices=[c for c in models],value=models[0],interactive=True)
with gr.Column(scale=1):
with gr.Group():
rand = gr.Checkbox(label="Random Seed", value=True)
seed=gr.Slider(label="Seed", minimum=1, maximum=1111111111111111,step=1, value=rand_val)
tokens = gr.Slider(label="Max new tokens",value=6400,minimum=0,maximum=8000,step=64,interactive=True, visible=True,info="The maximum number of tokens")
temp=gr.Slider(label="Temperature",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
top_p=gr.Slider(label="Top-P",step=0.01, minimum=0.01, maximum=1.0, value=0.9)
rep_p=gr.Slider(label="Repetition Penalty",step=0.1, minimum=0.1, maximum=2.0, value=1.0)
with gr.Accordion(label="Screenshot",open=False):
with gr.Row():
with gr.Column(scale=3):
im_btn=gr.Button("Screenshot")
img=gr.Image(type='filepath')
with gr.Column(scale=1):
with gr.Row():
im_height=gr.Number(label="Height",value=5000)
im_width=gr.Number(label="Width",value=500)
wait_time=gr.Number(label="Wait Time",value=3000)
theme=gr.Radio(label="Theme", choices=["light","dark"],value="light")
chatblock=gr.Dropdown(label="Chatblocks",info="Choose specific blocks of chat",choices=[c for c in range(1,40)],multiselect=True)
im_go=im_btn.click(get_screenshot,[chat_b,im_height,im_width,chatblock,theme,wait_time],img)
chat_sub=inp.submit(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p],chat_b)
go=btn.click(check_rand,[rand,seed],seed).then(chat_inf,[sys_inp,inp,chat_b,client_choice,seed,temp,tokens,top_p,rep_p],chat_b)
stop_btn.click(None,None,None,cancels=[go,im_go,chat_sub])
clear_btn.click(clear_fn,None,[inp,sys_inp,chat_b])
app.queue(default_concurrency_limit=10).launch() |