Spaces:
Running
Running
File size: 5,536 Bytes
983d072 b9e7f35 983d072 08a7509 11b5377 08a7509 1f62c1a dea231e 11b5377 fe42c78 11b5377 686fe7a eef06b6 b9e7f35 11b5377 d633848 11b5377 a236b79 11b5377 a236b79 544b4ee 1f62c1a 11b5377 8d5132b a236b79 1f62c1a 8d5132b a236b79 544b4ee 1f62c1a 8d5132b a236b79 8d5132b 544b4ee 1f62c1a 8d5132b a236b79 1f62c1a 44aa685 a236b79 2845f78 a236b79 1f62c1a b9e7f35 2845f78 eef06b6 2845f78 eef06b6 2845f78 eef06b6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
import gradio as gr
import requests
import io
import random
import os
from PIL import Image
list_models = [
"SDXL-1.0",
"SD-1.5",
"OpenJourney-V4",
"Anything-V4",
"Disney-Pixar-Cartoon",
"Pixel-Art-XL",
"Dalle-3-XL",
"Midjourney-V4-XL",
]
def generate_txt2img(current_model, prompt, is_negative=False, image_style="None style", steps=50, cfg_scale=7,
seed=None):
if current_model == "SD-1.5":
API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
elif current_model == "SDXL-1.0":
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
elif current_model == "OpenJourney-V4":
API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney"
elif current_model == "Anything-V4":
API_URL = "https://api-inference.huggingface.co/models/xyn-ai/anything-v4.0"
elif current_model == "Disney-Pixar-Cartoon":
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/disney-pixar-cartoon"
elif current_model == "Pixel-Art-XL":
API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
elif current_model == "Dalle-3-XL":
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
elif current_model == "Midjourney-V4-XL":
API_URL = "https://api-inference.huggingface.co/models/openskyml/midjourney-v4-xl"
API_TOKEN = os.environ.get("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
if image_style == "None style":
payload = {
"inputs": prompt + ", 8k",
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Cinematic":
payload = {
"inputs": prompt + ", realistic, detailed, textured, skin, hair, eyes, by Alex Huguet, Mike Hill, Ian Spriggs, JaeCheol Park, Marek Denko",
"is_negative": is_negative + ", abstract, cartoon, stylized",
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Digital Art":
payload = {
"inputs": prompt + ", faded , vintage , nostalgic , by Jose Villa , Elizabeth Messina , Ryan Brenizer , Jonas Peterson , Jasmine Star",
"is_negative": is_negative + ", sharp , modern , bright",
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Portrait":
payload = {
"inputs": prompt + ", soft light, sharp, exposure blend, medium shot, bokeh, (hdr:1.4), high contrast, (cinematic, teal and orange:0.85), (muted colors, dim colors, soothing tones:1.3), low saturation, (hyperdetailed:1.2), (noir:0.4), (natural skin texture, hyperrealism, soft light, sharp:1.2)",
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
image_bytes = requests.post(API_URL, headers=headers, json=payload).content
image = Image.open(io.BytesIO(image_bytes))
return image
import gradio as gr
css = """
/* General Container Styles */
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
max-width: 800px !important;
margin: auto;
padding-top: 2rem;
}
/* Button Styles */
.gradio-button-primary {
color: #fff;
background-color: #2563eb;
border-color: #1d4ed8;
}
.gradio-button-primary:hover {
background-color: #1d4ed8;
border-color: #1d4ed8;
}
/* Input Styles */
.gradio-textbox {
border-color: #a0aec0;
padding: 9px 12px;
}
.gradio-textbox:focus {
border-color: #2563eb;
box-shadow: 0 0 0 2px rgba(37,99,235,.25);
}
/* Output Image Styles */
.gradio-output img {
max-width: 100%;
height: auto;
border-radius: 6px;
box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1), 0 2px 4px -1px rgba(0, 0, 0, 0.06);
}
"""
def generate_txt2img(current_model, text_prompt, negative_prompt, image_style):
# Your generation code here
pass
favicon = '<img src="" width="48px" style="display: inline">'
title = f"""<h1><center>{favicon} AI Diffusion</center></h1>"""
markdown_title = gr.Markdown(title)
current_model = gr.inputs.Dropdown(label="Current Model", choices=list_models, value=list_models[1])
text_prompt = gr.inputs.Textbox(label="Prompt", placeholder="Enter a prompt", lines=1)
negative_prompt = gr.inputs.Textbox(label="Negative Prompt", value="text, blurry, fuzziness", lines=1)
image_style = gr.inputs.Dropdown(label="Style", choices=["None style", "Cinematic", "Digital Art", "Portrait"], value="None style")
generate_button = gr.outputs.Button(label="Generate", type="button")
image_output = gr.outputs.Image(label="Output Image")
with gr.Blocks(css=css) as demo:
gr.Grid(col_width="auto", col_gap="10px").push(
markdown_title,
current_model,
text_prompt,
negative_prompt,
image_style,
generate_button,
image_output
)
generate_button.click(generate_txt2img, inputs=[current_model, text_prompt, negative_prompt, image_style], outputs=image_output)
demo.launch(show_api=False) |