Spaces:
Running
Running
File size: 6,260 Bytes
983d072 b9e7f35 983d072 8e18ff8 08a7509 8e18ff8 08a7509 8e18ff8 11b5377 fe42c78 11b5377 686fe7a 8e18ff8 7ffb950 8e18ff8 7ffb950 8e18ff8 3bab0ce 8e18ff8 3bab0ce 8e18ff8 7ffb950 3bab0ce 7ffb950 8e18ff8 7ffb950 3bab0ce 8e18ff8 7ffb950 3bab0ce 8e18ff8 7ffb950 3bab0ce 8e18ff8 7ffb950 3bab0ce 8e18ff8 3bab0ce 8e18ff8 3bab0ce 8e18ff8 7ffb950 8e18ff8 3bab0ce 8e18ff8 1ef95ec 8e18ff8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
import gradio as gr
import requests
import io
import random
import os
from PIL import Image
# List of available models
list_models = [
"SDXL-1.0", "SD-1.5", "OpenJourney-V4", "Anything-V4",
"Disney-Pixar-Cartoon", "Pixel-Art-XL", "Dalle-3-XL", "Midjourney-V4-XL",
]
# Function to generate images from text
def generate_txt2img(current_model, prompt, is_negative=False, image_style="None style", steps=50, cfg_scale=7, seed=None):
if current_model == "SD-1.5":
API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
elif current_model == "SDXL-1.0":
API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
elif current_model == "OpenJourney-V4":
API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney"
elif current_model == "Anything-V4":
API_URL = "https://api-inference.huggingface.co/models/xyn-ai/anything-v4.0"
elif current_model == "Disney-Pixar-Cartoon":
API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/disney-pixar-cartoon"
elif current_model == "Pixel-Art-XL":
API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
elif current_model == "Dalle-3-XL":
API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
elif current_model == "Midjourney-V4-XL":
API_URL = "https://api-inference.huggingface.co/models/openskyml/midjourney-v4-xl"
API_TOKEN = os.environ.get("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}
if image_style == "None style":
payload = {
"inputs": prompt + ", 8k",
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Cinematic":
payload = {
"inputs": prompt + ", realistic, detailed, textured, skin, hair, eyes, by Alex Huguet, Mike Hill, Ian Spriggs, JaeCheol Park, Marek Denko",
"is_negative": is_negative + ", abstract, cartoon, stylized",
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Digital Art":
payload = {
"inputs": prompt + ", faded , vintage , nostalgic , by Jose Villa , Elizabeth Messina , Ryan Brenizer , Jonas Peterson , Jasmine Star",
"is_negative": is_negative + ", sharp , modern , bright",
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
elif image_style == "Portrait":
payload = {
"inputs": prompt + ", soft light, sharp, exposure blend, medium shot, bokeh, (hdr:1.4), high contrast, (cinematic, teal and orange:0.85), (muted colors, dim colors, soothing tones:1.3), low saturation, (hyperdetailed:1.2), (noir:0.4), (natural skin texture, hyperrealism, soft light, sharp:1.2)",
"is_negative": is_negative,
"steps": steps,
"cfg_scale": cfg_scale,
"seed": seed if seed is not None else random.randint(-1, 2147483647)
}
image_bytes = requests.post(API_URL, headers=headers, json=payload).content
image = Image.open(io.BytesIO(image_bytes))
return image
css = """
/* Custom CSS */
.gradio-container {
font-family: 'IBM Plex Sans', sans-serif;
max-width: 900px;
margin: auto;
padding-top: 1.5rem;
border-radius: 15px; /* 添加圆角边框 */
box-shadow: 0px 4px 8px rgba(0, 0, 0, 0.1); /* 可选:为深度添加阴影 */
}
/* Button Styles */
.gr-button {
color: white;
border-color: black;
background: black;
white-space: nowrap;
border-radius: 8px; /* 圆角按钮 */
transition: background-color 0.3s, color 0.3s; /* 平滑的悬停效果过渡 */
}
.gr-button:hover {
background-color: #555; /* 悬停时略微变亮的黑色 */
color: #fff;
}
.gr-button:focus {
/* [其他焦点样式] */
}
/* Textbox Styles */
.gr-textbox {
border-radius: 8px; /* 文本框的圆角边框 */
border: 1px solid #ccc; /* 添加微弱的边框 */
transition: border-color 0.3s; /* 焦点效果的过渡 */
}
.gr-textbox:focus {
border-color: #333; /* 焦点时较暗的边框 */
outline: none; /* 移除默认轮廓 */
}
/* Footer Styles */
/* [这里不需要更改,除非你想要圆角边框] */
/* Share Button Styles */
#share-btn-container {
/* [现有样式] */
border-radius: 20px; /* 更圆角的分享按钮容器 */
}
/* Animation Styles */
/* [这里不需要更改] */
/* Gallery Styles */
#gallery {
/* [现有样式] */
border-radius: 12px; /* 图库的圆角边框 */
}
/* 图片大小限制 */
.gradio-container img {
max-width: 100%; /* 图片宽度不超过父容器的100% */
height: auto; /* 自适应高度 */
}
"""
# Creating Gradio interface
with gr.Blocks(css=css) as demo:
with gr.Row():
with gr.Column():
gr.Markdown("<h1>AI Diffusion</h1>")
current_model = gr.Dropdown(label="Select Model", choices=list_models, value=list_models[1])
text_prompt = gr.Textbox(label="Enter Prompt", placeholder="Example: a cute dog", lines=2)
generate_button = gr.Button("Generate Image", variant='primary')
with gr.Column():
gr.Markdown("<h4>Advanced Settings</h4>")
with gr.Accordion("Advanced Customizations", open=False):
negative_prompt = gr.Textbox(label="Negative Prompt (Optional)", placeholder="Example: blurry, unfocused", lines=2)
image_style = gr.Dropdown(label="Select Style", choices=["None style", "Cinematic", "Digital Art", "Portrait"], value="None style")
# Add more options if needed
with gr.Row():
image_output = gr.Image(type="pil", label="Output Image")
generate_button.click(generate_txt2img, inputs=[current_model, text_prompt, negative_prompt, image_style], outputs=image_output)
# Launch the app
demo.launch() |