File size: 6,365 Bytes
983d072
b9e7f35
 
 
 
 
983d072
1f62c1a
08a7509
1f62c1a
 
 
 
 
 
 
 
08a7509
 
1f62c1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9e7f35
1f62c1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9e7f35
1f62c1a
d633848
1f62c1a
 
 
544b4ee
1f62c1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
544b4ee
1f62c1a
 
 
 
 
 
 
544b4ee
1f62c1a
 
 
 
 
 
 
544b4ee
1f62c1a
 
 
544b4ee
9ce81f8
1f62c1a
 
 
44aa685
1f62c1a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b9e7f35
1f62c1a
 
 
 
 
 
 
 
 
 
 
 
 
44aa685
1f62c1a
 
 
 
 
b9e7f35
1f62c1a
 
 
 
 
 
 
44aa685
1f62c1a
 
44aa685
1f62c1a
44aa685
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
import gradio as gr
import requests
import io
import random
import os
from PIL import Image

List of available models
list_models = [
"SDXL-1.0",
"SD-1.5",
"OpenJourney-V4",
"Anything-V4",
"Disney-Pixar-Cartoon",
"Pixel-Art-XL",
"Dalle-3-XL",
"Midjourney-V4-XL",
]

Function to generate image from text prompt using selected model and style
def generate_txt2img(current_model, prompt, is_negative=False, image_style="None style", steps=50, cfg_scale=7,
seed=None):
# API URLs for different models
if current_model == "SD-1.5":
    API_URL = "https://api-inference.huggingface.co/models/runwayml/stable-diffusion-v1-5"
elif current_model == "SDXL-1.0":
    API_URL = "https://api-inference.huggingface.co/models/stabilityai/stable-diffusion-xl-base-1.0"
elif current_model == "OpenJourney-V4":
    API_URL = "https://api-inference.huggingface.co/models/prompthero/openjourney"       
elif current_model == "Anything-V4":
    API_URL = "https://api-inference.huggingface.co/models/xyn-ai/anything-v4.0" 
elif current_model == "Disney-Pixar-Cartoon":
    API_URL = "https://api-inference.huggingface.co/models/stablediffusionapi/disney-pixar-cartoon"
elif current_model == "Pixel-Art-XL":
    API_URL = "https://api-inference.huggingface.co/models/nerijs/pixel-art-xl"
elif current_model == "Dalle-3-XL":
    API_URL = "https://api-inference.huggingface.co/models/openskyml/dalle-3-xl"
elif current_model == "Midjourney-V4-XL":
    API_URL = "https://api-inference.huggingface.co/models/openskyml/midjourney-v4-xl"    

API_TOKEN = os.environ.get("HF_READ_TOKEN")
headers = {"Authorization": f"Bearer {API_TOKEN}"}

# Construct payload based on selected style and options
if image_style == "None style":
    payload = {
        "inputs": prompt + ", 8k",
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed if seed is not None else random.randint(-1, 2147483647)
    }
elif image_style == "Cinematic":
    payload = {
        "inputs": prompt + ", realistic, detailed, textured, skin, hair, eyes, by Alex Huguet, Mike Hill, Ian Spriggs, JaeCheol Park, Marek Denko",
        "is_negative": is_negative + ", abstract, cartoon, stylized",
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed if seed is not None else random.randint(-1, 2147483647)
    }
elif image_style == "Digital Art":
    payload = {
        "inputs": prompt + ", faded , vintage , nostalgic , by Jose Villa , Elizabeth Messina , Ryan Brenizer , Jonas Peterson , Jasmine Star",
        "is_negative": is_negative + ", sharp , modern , bright",
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed if seed is not None else random.randint(-1, 2147483647)
    }
elif image_style == "Portrait":
    payload = {
        "inputs": prompt + ", soft light, sharp, exposure blend, medium shot, bokeh, (hdr:1.4), high contrast, (cinematic, teal and orange:0.85), (muted colors, dim colors, soothing tones:1.3), low saturation, (hyperdetailed:1.2), (noir:0.4), (natural skin texture, hyperrealism, soft light, sharp:1.2)",
        "is_negative": is_negative,
        "steps": steps,
        "cfg_scale": cfg_scale,
        "seed": seed if seed is not None else random.randint(-1, 2147483647)
    }

# Send request to API and retrieve image
image_bytes = requests.post(API_URL, headers=headers, json=payload).content
image = Image.open(io.BytesIO(image_bytes))
return image
CSS styles for the app
css = """
/* General Container Styles */
.gradio-container {
max-width: 800px !important;
margin: auto;
padding-top: 1.5rem;
}

/* Button Styles */
.gr-button {
color: white;
border-color: black;
background: black;
white-space: nowrap;
}

.gr-button:focus {
border-color: rgb(147 197 253 / var(--tw-border-opacity));
outline: none;
box-shadow: var(--tw-ring-offset-shadow), var(--tw-ring-shadow), var(--tw-shadow, 0 0 #0000);
--tw-border-opacity: 1;
--tw-ring-offset-shadow: var(--tw-ring-inset) 0 0 0 var(--tw-ring-offset-width) var(--tw-ring-offset-color);
--tw-ring-shadow: var(--tw-ring-inset) 0 0 0 calc(3px var(--tw-ring-offset-width)) var(--tw-ring-color);
--tw-ring-color: rgb(191 219 254 / var(--tw-ring-opacity));
--tw-ring-opacity: .5;
}

/* Footer Styles */
.footer, .dark .footer {
margin-bottom: 45px;
margin-top: 35px;
text-align: center;
border-bottom: 1px solid #e5e5e5;
}

.footer > p, .dark .footer > p {
font-size: .8rem;
display: inline-block;
padding: 0 10px;
transform: translateY(10px);
background: white;
}

.dark .footer {
border-color: #303030;
}

.dark .footer > p {
background: #0b0f19;
}

/* Share Button Styles */
#share-btn-container {
padding: 0 0.5rem !important;
background-color: #000000;
justify-content: center;
align-items: center;
border-radius: 9999px !important;
max-width: 13rem;
margin-left: auto;
}

#share-btn-container:hover {
background-color: #060606;
}

#share-btn {
all: initial;
color: #ffffff;
font-weight: 600;
cursor: pointer;
font-family: 'IBM Plex Sans', sans-serif;
margin-left: 0.5rem !important;
padding: 0.5rem !important;
right: 0;
}

/* Animation Styles */
.animate-spin {
animation: spin 1s linear infinite;
}

@keyframes spin {
from { transform: rotate(0deg); }
to { transform: rotate(360deg); }
}

/* Other Styles */
#gallery {
min-height: 22rem;
margin-bottom: 15px;
margin-left: auto;
margin-right: auto;
border-bottom-right-radius: .5rem !important;
border-bottom-left-radius: .5rem !important;
}
"""

Create the app interface
with gr.Interface(generate_txt2img,
title="AI Diffusion",
description="Generate images from text prompts using different AI models and styles",
examples=[
["a cute dog"],
["a beautiful sunset"],
["a fantasy world"]
],
layout="vertical",
css=css) as demo:
# Add model selection dropdown
demo.inputs[0].label = "Current Model"

# Add prompt text input and generate button
demo.inputs[1].label = "Prompt"
demo.inputs[1].placeholder = "Enter your text prompt here"
demo.inputs[1].lines = 1
demo.inputs[2].visibility = "hidden"  # Hide negative prompt textbox initially

@demo.inputs[3].callback
def style_selected(value):
    # Show or hide negative prompt textbox based on the selected style
    if value == "None style":
        demo.inputs[2].visibility = "hidden"
    else:
        demo.inputs[2].visibility = "visible"

# Add image output
demo.outputs[0].label = "Generated Image"

# Run the app
demo.launch()