prithivMLmods commited on
Commit
0704ce3
·
verified ·
1 Parent(s): 64dec74

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -20
app.py CHANGED
@@ -1,18 +1,8 @@
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
  import json
4
- import uuid
5
- from PIL import Image
6
  from bs4 import BeautifulSoup
7
  import requests
8
- import random
9
- from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
10
- from threading import Thread
11
- import re
12
- import time
13
- import torch
14
- import cv2
15
- from gradio_client import Client, file
16
 
17
  def extract_text_from_webpage(html_content):
18
  soup = BeautifulSoup(html_content, 'html.parser')
@@ -22,13 +12,12 @@ def extract_text_from_webpage(html_content):
22
 
23
  def search(query):
24
  term = query
25
- start = 0
26
  all_results = []
27
  max_chars_per_page = 8000
28
  with requests.Session() as session:
29
  resp = session.get(
30
  url="https://www.google.com/search",
31
- headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"},
32
  params={"q": term, "num": 3, "udm": 14},
33
  timeout=5,
34
  verify=None,
@@ -40,7 +29,7 @@ def search(query):
40
  link = result.find("a", href=True)
41
  link = link["href"]
42
  try:
43
- webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:109.0) Gecko/20100101 Firefox/111.0"}, timeout=5, verify=False)
44
  webpage.raise_for_status()
45
  visible_text = extract_text_from_webpage(webpage.text)
46
  if len(visible_text) > max_chars_per_page:
@@ -50,9 +39,7 @@ def search(query):
50
  all_results.append({"link": link, "text": None})
51
  return all_results
52
 
53
- # Initialize inference clients for different models
54
  client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
55
- client_mixtral = InferenceClient("NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO")
56
  client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
57
 
58
  func_caller = []
@@ -93,7 +80,7 @@ def respond(message, history):
93
  web_results = search(query)
94
  gr.Info("Extracting relevant Info")
95
  web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results if res['text']])
96
- messages = f"system\nYou are OpenCHAT mini a helpful assistant made by KingNish. You are provided with WEB results from which you can find informations to answer users query in Structured and More better way. You do not say Unnecesarry things Only say thing which is important and relevant. You also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions."
97
  for msg in history:
98
  messages += f"\nuser\n{str(msg[0])}"
99
  messages += f"\nassistant\n{str(msg[1])}"
@@ -105,7 +92,7 @@ def respond(message, history):
105
  output += response.token.text
106
  yield output
107
  else:
108
- messages = f"system\nYou are OpenCHAT mini a helpful assistant made by KingNish. You answers users query like human friend. You are also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions."
109
  for msg in history:
110
  messages += f"\nuser\n{str(msg[0])}"
111
  messages += f"\nassistant\n{str(msg[1])}"
@@ -117,7 +104,7 @@ def respond(message, history):
117
  output += response.token.text
118
  yield output
119
  except:
120
- messages = f"system\nYou are OpenCHAT mini a helpful assistant made by KingNish. You answers users query like human friend. You are also Expert in every field and also learn and try to answer from contexts related to previous question. Try your best to give best response possible to user. You also try to show emotions using Emojis and reply like human, use short forms, friendly tone and emotions."
121
  for msg in history:
122
  messages += f"\nuser\n{str(msg[0])}"
123
  messages += f"\nassistant\n{str(msg[1])}"
@@ -133,8 +120,8 @@ demo = gr.ChatInterface(
133
  fn=respond,
134
  chatbot=gr.Chatbot(show_copy_button=True, likeable=True, layout="panel"),
135
  description=" ",
136
- textbox=gr.MultimodalTextbox(),
137
- multimodal=True,
138
  concurrency_limit=200,
139
  )
140
  demo.launch()
 
1
  import gradio as gr
2
  from huggingface_hub import InferenceClient
3
  import json
 
 
4
  from bs4 import BeautifulSoup
5
  import requests
 
 
 
 
 
 
 
 
6
 
7
  def extract_text_from_webpage(html_content):
8
  soup = BeautifulSoup(html_content, 'html.parser')
 
12
 
13
  def search(query):
14
  term = query
 
15
  all_results = []
16
  max_chars_per_page = 8000
17
  with requests.Session() as session:
18
  resp = session.get(
19
  url="https://www.google.com/search",
20
+ headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36"},
21
  params={"q": term, "num": 3, "udm": 14},
22
  timeout=5,
23
  verify=None,
 
29
  link = result.find("a", href=True)
30
  link = link["href"]
31
  try:
32
+ webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36"}, timeout=5, verify=False)
33
  webpage.raise_for_status()
34
  visible_text = extract_text_from_webpage(webpage.text)
35
  if len(visible_text) > max_chars_per_page:
 
39
  all_results.append({"link": link, "text": None})
40
  return all_results
41
 
 
42
  client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
 
43
  client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")
44
 
45
  func_caller = []
 
80
  web_results = search(query)
81
  gr.Info("Extracting relevant Info")
82
  web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results if res['text']])
83
+ messages = f"Web Dac uses the user agents of Mozilla, AppleWebKit, and Safari browsers for chat responses and human context mimicking."
84
  for msg in history:
85
  messages += f"\nuser\n{str(msg[0])}"
86
  messages += f"\nassistant\n{str(msg[1])}"
 
92
  output += response.token.text
93
  yield output
94
  else:
95
+ messages = f"Web Dac uses the user agents of Mozilla, AppleWebKit, and Safari browsers for chat responses and human context mimicking."
96
  for msg in history:
97
  messages += f"\nuser\n{str(msg[0])}"
98
  messages += f"\nassistant\n{str(msg[1])}"
 
104
  output += response.token.text
105
  yield output
106
  except:
107
+ messages = f"Web Dac uses the user agents of Mozilla, AppleWebKit, and Safari browsers for chat responses and human context mimicking."
108
  for msg in history:
109
  messages += f"\nuser\n{str(msg[0])}"
110
  messages += f"\nassistant\n{str(msg[1])}"
 
120
  fn=respond,
121
  chatbot=gr.Chatbot(show_copy_button=True, likeable=True, layout="panel"),
122
  description=" ",
123
+ textbox=gr.Textbox(),
124
+ multimodal=False,
125
  concurrency_limit=200,
126
  )
127
  demo.launch()