File size: 5,970 Bytes
2cd4061
 
 
b01cc46
2cd4061
 
 
b01cc46
 
 
 
 
 
 
 
2cd4061
 
 
 
 
 
 
 
 
b01cc46
2cd4061
 
 
 
 
1fc1a44
b01cc46
 
 
2cd4061
 
 
 
 
 
 
 
1fc1a44
2cd4061
 
 
 
 
 
 
 
 
25554bb
 
 
2cd4061
b01cc46
 
2cd4061
 
 
 
fd2037f
 
 
2cd4061
fd2037f
 
 
2cd4061
b01cc46
fd2037f
2cd4061
fd2037f
 
 
b01cc46
fd2037f
 
 
 
 
 
 
2cd4061
fd2037f
 
 
 
b01cc46
fd2037f
b01cc46
 
ea10a4f
2cd4061
fd2037f
 
 
 
 
 
 
 
 
 
ea10a4f
fd2037f
 
 
 
2cd4061
 
 
fd2037f
2cd4061
 
fd2037f
ea10a4f
fd2037f
 
 
 
 
 
 
 
 
 
6dc1ca6
2cd4061
 
 
b01cc46
2cd4061
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import gradio as gr
from huggingface_hub import InferenceClient
import json
import uuid
from PIL import Image
from bs4 import BeautifulSoup
import requests
import random
from transformers import LlavaProcessor, LlavaForConditionalGeneration, TextIteratorStreamer
from threading import Thread
import re
import time 
import torch
import cv2
from gradio_client import Client, file

def extract_text_from_webpage(html_content):
    soup = BeautifulSoup(html_content, 'html.parser')
    for tag in soup(["script", "style", "header", "footer"]):
        tag.extract()
    return soup.get_text(strip=True)

def search(query):
    term = query
    start = 0
    all_results = []
    max_chars_per_page = 8000
    with requests.Session() as session:
        resp = session.get(
            url="https://www.google.com/search",
            headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36"},
            params={"q": term, "num": 3, "udm": 14},
            timeout=5,
            verify=None,
        )
        resp.raise_for_status()
        soup = BeautifulSoup(resp.text, "html.parser")
        result_block = soup.find_all("div", attrs={"class": "g"})
        for result in result_block:
            link = result.find("a", href=True)
            link = link["href"]
            try:
                webpage = session.get(link, headers={"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/111.0.0.0 Safari/537.36"}, timeout=5, verify=False)
                webpage.raise_for_status()
                visible_text = extract_text_from_webpage(webpage.text)
                if len(visible_text) > max_chars_per_page:
                    visible_text = visible_text[:max_chars_per_page]
                all_results.append({"link": link, "text": visible_text})
            except requests.exceptions.RequestException:
                all_results.append({"link": link, "text": None})
    return all_results


client_gemma = InferenceClient("mistralai/Mistral-7B-Instruct-v0.3")
client_llama = InferenceClient("meta-llama/Meta-Llama-3-8B-Instruct")

func_caller = []

def respond(message, history):
    func_caller = []

    user_prompt = message
    functions_metadata = [
        {"type": "function", "function": {"name": "web_search", "description": "Search query on google", "parameters": {"type": "object", "properties": {"query": {"type": "string", "description": "web search query"}}, "required": ["query"]}}},
    ]

    for msg in history:
        func_caller.append({"role": "user", "content": f"{str(msg[0])}"})
        func_caller.append({"role": "assistant", "content": f"{str(msg[1])}"})

    message_text = message["text"]
    func_caller.append({"role": "user", "content": f'[SYSTEM]You are a helpful assistant. You have access to the following functions: \n {str(functions_metadata)}\n\nTo use these functions respond with:\n<functioncall> {{ "name": "function_name", "arguments": {{ "arg_1": "value_1", "arg_1": "value_1", ... }} }}  </functioncall>  [USER] {message_text}'})
    
    response = client_gemma.chat_completion(func_caller, max_tokens=200)
    response = str(response)
    try:
        response = response[int(response.find("{")):int(response.rindex("}"))+1]
    except:
        response = response[int(response.find("{")):(int(response.rfind("}"))+1)]
    response = response.replace("\\n", "")
    response = response.replace("\\'", "'")
    response = response.replace('\\"', '"')
    response = response.replace('\\', '')
    print(f"\n{response}")
    
    try:
        json_data = json.loads(str(response))
        if json_data["name"] == "web_search":
            query = json_data["arguments"]["query"]
            gr.Info("Searching Web")
            web_results = search(query)
            gr.Info("Extracting relevant Info")
            web2 = ' '.join([f"Link: {res['link']}\nText: {res['text']}\n\n" for res in web_results if res['text']])
            messages = f""
            for msg in history:
                messages += f"\nuser\n{str(msg[0])}"
                messages += f"\nassistant\n{str(msg[1])}"
            messages+=f"\nuser\n{message_text}\nweb_result\n{web2}\nassistant\n"
            stream = client_mixtral.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
            output = ""
            for response in stream:
                if not response.token.text == "":
                    output += response.token.text
                    yield output
        else:
            messages = f""
            for msg in history:
                messages += f"\nuser\n{str(msg[0])}"
                messages += f"\nassistant\n{str(msg[1])}"
            messages+=f"\nuser\n{message_text}\nassistant\n"
            stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
            output = ""
            for response in stream:
                if not response.token.text == "":
                    output += response.token.text
                    yield output
    except:
        messages = f""
        for msg in history:
            messages += f"\nuser\n{str(msg[0])}"
            messages += f"\nassistant\n{str(msg[1])}"
        messages+=f"\nuser\n{message_text}\nassistant\n"
        stream = client_llama.text_generation(messages, max_new_tokens=2000, do_sample=True, stream=True, details=True, return_full_text=False)
        output = ""
        for response in stream:
            if not response.token.text == "":
                output += response.token.text
                yield output

demo = gr.ChatInterface(
    fn=respond,
    chatbot=gr.Chatbot(show_copy_button=True, likeable=True, layout="panel"),
    description=" ",
    textbox=gr.MultimodalTextbox(),
    multimodal=True,
    concurrency_limit=200,
)
demo.launch()