File size: 123,882 Bytes
19a37f3 b3ae1ba adf895d 4add2a4 574e025 964c38f 19a37f3 4c82165 c730636 aa2cd6e c730636 4853dce c730636 ee1c18d fdd5b1f 7c1a6bf aa2cd6e ee1c18d 0c80777 77fd5a2 c730636 f4462c5 c730636 ed7ddca c730636 2dea46b c730636 ed7ddca c730636 ed7ddca c730636 ed7ddca c730636 ed7ddca 2dea46b ed7ddca 2dea46b ed7ddca c730636 ee1c18d c730636 cacc654 1b92bc9 cacc654 9e4885c dc537d3 c730636 b3ae1ba dc537d3 c730636 dc537d3 b3ae1ba dc537d3 b3ae1ba dc537d3 b3ae1ba dc537d3 c730636 b3ae1ba cacc654 dc537d3 c730636 cacc654 b3ae1ba cacc654 c730636 8ef3df1 b3ae1ba cacc654 dc537d3 8ef3df1 cacc654 dc537d3 c730636 dc537d3 c730636 fdd5b1f c730636 ed7ddca c730636 fdd5b1f c730636 fdd5b1f c730636 ee1c18d c730636 cacc654 c730636 b3ae1ba cacc654 dc537d3 cacc654 dc537d3 cacc654 dc537d3 fdd5b1f c730636 ed7ddca c730636 ed7ddca fdd5b1f 2dea46b cacc654 1a73c50 adf895d b3ae1ba cbbe438 cacc654 1a73c50 dc537d3 c730636 1a73c50 dc537d3 c730636 8ef3df1 b3ae1ba cacc654 dc537d3 1a73c50 dc537d3 1a73c50 dc537d3 8ef3df1 1a73c50 dc537d3 c730636 dc537d3 c730636 fdd5b1f c730636 cacc654 ed7ddca cacc654 dc537d3 1a73c50 cacc654 dc537d3 ed7ddca dc537d3 ed7ddca dc537d3 c730636 dc537d3 fdd5b1f ed7ddca dc537d3 ed7ddca dc537d3 fdd5b1f c730636 cacc654 dc537d3 cacc654 dc537d3 cacc654 c730636 1a73c50 cacc654 dc537d3 cacc654 dc537d3 cacc654 1a73c50 b3ae1ba cacc654 dc537d3 cacc654 dc537d3 cacc654 fdd5b1f dc537d3 fdd5b1f c730636 63e7ff5 c730636 cbbe438 c730636 5c66cbb 8ef3df1 b3ae1ba 8ef3df1 5c66cbb c730636 fdd5b1f c730636 fdd5b1f c730636 5c66cbb fdd5b1f c730636 f4462c5 574e025 f4462c5 574e025 d265e96 f4462c5 a455050 1b92bc9 675e6f3 f4462c5 1b92bc9 f4462c5 208563c 574e025 f4462c5 b3ae1ba 1b92bc9 f4462c5 675e6f3 f4462c5 fdd5b1f f4462c5 fdd5b1f f4462c5 d6038df f4462c5 fdd5b1f d6038df fdd5b1f d6038df fdd5b1f d6038df fdd5b1f d6038df fdd5b1f d6038df fdd5b1f d6038df fdd5b1f d6038df fdd5b1f d6038df fdd5b1f d6038df f4462c5 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 29a6b18 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 5ba3759 77fd5a2 9e2a5dd 19a37f3 9e2a5dd 77fd5a2 9e2a5dd 77fd5a2 19a37f3 9e2a5dd 19a37f3 77fd5a2 19a37f3 77fd5a2 9e2a5dd 77fd5a2 9e2a5dd 5ba3759 9e2a5dd 5ba3759 77fd5a2 5ba3759 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 19a37f3 77fd5a2 c730636 f4462c5 c730636 b3ae1ba c730636 4c3fbd3 cacc654 b3ae1ba dc537d3 c730636 cacc654 c730636 c92323a dc537d3 c92323a c730636 cacc654 dc537d3 cacc654 dc537d3 c730636 adc22db c730636 b3ae1ba c730636 adf895d c730636 4c3fbd3 dc537d3 1a73c50 dc537d3 c730636 ed7ddca adf895d c92323a dc537d3 c92323a c730636 1a73c50 dc537d3 b3ae1ba cacc654 1a73c50 dc537d3 c730636 adc22db c730636 63e7ff5 c730636 4c3fbd3 1bdb7e1 c730636 c92323a 5c66cbb c92323a 8d5ec93 5c66cbb b3ae1ba 5c66cbb b3ae1ba 5c66cbb 8d5ec93 adc22db c730636 4c3fbd3 f732b24 4c3fbd3 f732b24 4c3fbd3 2dea46b 4c3fbd3 f732b24 4c3fbd3 db1adf2 4c3fbd3 f732b24 4c3fbd3 5794b7d 4c3fbd3 f4462c5 574e025 f4462c5 d265e96 f4462c5 4c3fbd3 574e025 f4462c5 adc22db f4462c5 29a6b18 f4462c5 1b92bc9 b3ae1ba 4c82165 f4462c5 adc22db f4462c5 29a6b18 19a37f3 29a6b18 9e2a5dd 29a6b18 19a37f3 9e2a5dd 19a37f3 9e2a5dd 19a37f3 4853dce 19a37f3 4853dce 19a37f3 4853dce 19a37f3 4853dce 19a37f3 29a6b18 19a37f3 9e2a5dd 19a37f3 29a6b18 19a37f3 9e2a5dd 19a37f3 77fd5a2 aa2cd6e cd28068 aa2cd6e d265e96 aa2cd6e cd28068 aa2cd6e 1b92bc9 aa2cd6e 21ba6d1 aa2cd6e fdd5b1f aa2cd6e fdd5b1f aa2cd6e cd28068 aa2cd6e fdd5b1f aa2cd6e cd28068 aa2cd6e 3fbb4bd fdd5b1f aa2cd6e cd28068 d265e96 aa2cd6e 4c3fbd3 aa2cd6e 4c3fbd3 aa2cd6e 4c3fbd3 aa2cd6e 1bdb7e1 cd28068 aa2cd6e 29a6b18 aa2cd6e 1b92bc9 b3ae1ba 1b92bc9 b3ae1ba aa2cd6e adc22db 57c8ad1 aa2cd6e 12e0f66 0c80777 12e0f66 1b92bc9 12e0f66 fdd5b1f 12e0f66 fdd5b1f 12e0f66 fdd5b1f 4c82165 12e0f66 3fbb4bd fdd5b1f 12e0f66 4c3fbd3 12e0f66 4beb2ea 12e0f66 29a6b18 12e0f66 1b92bc9 b3ae1ba 12e0f66 b3ae1ba 4c82165 12e0f66 adc22db 57c8ad1 12e0f66 2dea46b d9e3bb0 2dea46b 4c82165 2dea46b e892648 57c8ad1 e892648 57c8ad1 2dea46b e892648 57c8ad1 e892648 57c8ad1 2dea46b e892648 f732b24 5794b7d f732b24 5794b7d fba9e37 5794b7d 2ea6e76 fba9e37 5794b7d f732b24 c730636 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 |
# Purpose: One Space that offers up to seven tools/tabs (all exposed as MCP tools):
# 1) Fetch — convert webpages to clean Markdown format
# 2) DuckDuckGo Search — compact JSONL search output (short keys to minimize tokens)
# 3) Python Code Executor — run Python code and capture stdout/errors
# 4) Kokoro TTS — synthesize speech from text using Kokoro-82M with 54 voice options
# 5) Memory Manager — lightweight JSON-based local memory store
# 6) Image Generation - HF serverless inference providers (requires HF_READ_TOKEN)
# 7) Video Generation - HF serverless inference providers (requires HF_READ_TOKEN)
# 8) Deep Research
from __future__ import annotations
import re
import json
import sys
import os
import random
from io import StringIO
from typing import List, Dict, Tuple, Annotated, Literal, Optional
import gradio as gr
import requests
from bs4 import BeautifulSoup
from markdownify import markdownify as md
from readability import Document
from urllib.parse import urlparse
from ddgs import DDGS
from PIL import Image
from huggingface_hub import InferenceClient
import time
import tempfile
import uuid
import threading
from datetime import datetime
# Optional imports for Kokoro TTS (loaded lazily)
import numpy as np
try:
import torch # type: ignore
except Exception: # pragma: no cover - optional dependency
torch = None # type: ignore
try:
from kokoro import KModel, KPipeline # type: ignore
except Exception: # pragma: no cover - optional dependency
KModel = None # type: ignore
KPipeline = None # type: ignore
# ==============================
# Fetch: Enhanced HTTP + extraction utils
# ==============================
def _http_get_enhanced(url: str, timeout: int | float = 30, *, skip_rate_limit: bool = False) -> requests.Response:
"""
Download the page with enhanced headers, timeout handling, and better error recovery.
"""
headers = {
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.124 Safari/537.36",
"Accept-Language": "en-US,en;q=0.9",
"Accept": "text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,*/*;q=0.8",
"Accept-Encoding": "gzip, deflate, br",
"DNT": "1",
"Connection": "keep-alive",
"Upgrade-Insecure-Requests": "1",
}
# Apply rate limiting unless explicitly skipped
if not skip_rate_limit:
_fetch_rate_limiter.acquire()
try:
response = requests.get(
url,
headers=headers,
timeout=timeout, # Configurable timeout
allow_redirects=True,
stream=False
)
response.raise_for_status()
return response
except requests.exceptions.Timeout:
raise requests.exceptions.RequestException("Request timed out. The webpage took too long to respond.")
except requests.exceptions.ConnectionError:
raise requests.exceptions.RequestException("Connection error. Please check the URL and your internet connection.")
except requests.exceptions.HTTPError as e:
if response.status_code == 403:
raise requests.exceptions.RequestException("Access forbidden. The website may be blocking automated requests.")
elif response.status_code == 404:
raise requests.exceptions.RequestException("Page not found. Please check the URL.")
elif response.status_code == 429:
raise requests.exceptions.RequestException("Rate limited. Please try again in a few minutes.")
else:
raise requests.exceptions.RequestException(f"HTTP error {response.status_code}: {str(e)}")
def _normalize_whitespace(text: str) -> str:
"""
Squeeze extra spaces and blank lines to keep things compact.
(Layman's terms: tidy up the text so it’s not full of weird spacing.)
"""
text = re.sub(r"[ \t\u00A0]+", " ", text)
text = re.sub(r"\n\s*\n\s*\n+", "\n\n", text.strip())
return text.strip()
def _truncate(text: str, max_chars: int) -> Tuple[str, bool]:
"""
Cut text if it gets too long; return the text and whether we trimmed.
(Layman's terms: shorten long text and tell us if we had to cut it.)
"""
if max_chars is None or max_chars <= 0 or len(text) <= max_chars:
return text, False
return text[:max_chars].rstrip() + " …", True
def _shorten(text: str, limit: int) -> str:
"""
Hard cap a string with an ellipsis to keep tokens small.
(Layman's terms: force a string to a max length with an ellipsis.)
"""
if limit <= 0 or len(text) <= limit:
return text
return text[: max(0, limit - 1)].rstrip() + "…"
def _domain_of(url: str) -> str:
"""
Show a friendly site name like "example.com".
(Layman's terms: pull the website's domain.)
"""
try:
return urlparse(url).netloc or ""
except Exception:
return ""
def _meta(soup: BeautifulSoup, name: str) -> str | None:
tag = soup.find("meta", attrs={"name": name})
return tag.get("content") if tag and tag.has_attr("content") else None
def _og(soup: BeautifulSoup, prop: str) -> str | None:
tag = soup.find("meta", attrs={"property": prop})
return tag.get("content") if tag and tag.has_attr("content") else None
def _extract_metadata(soup: BeautifulSoup, final_url: str) -> Dict[str, str]:
"""
Pull the useful bits: title, description, site name, canonical URL, language, etc.
(Layman's terms: gather page basics like title/description/address.)
"""
meta: Dict[str, str] = {}
# Title preference: <title> > og:title > twitter:title
title_candidates = [
(soup.title.string if soup.title and soup.title.string else None),
_og(soup, "og:title"),
_meta(soup, "twitter:title"),
]
meta["title"] = next((t.strip() for t in title_candidates if t and t.strip()), "")
# Description preference: description > og:description > twitter:description
desc_candidates = [
_meta(soup, "description"),
_og(soup, "og:description"),
_meta(soup, "twitter:description"),
]
meta["description"] = next((d.strip() for d in desc_candidates if d and d.strip()), "")
# Canonical link (helps dedupe)
link_canonical = soup.find("link", rel=lambda v: v and "canonical" in v)
meta["canonical"] = (link_canonical.get("href") or "").strip() if link_canonical else ""
# Site name + language info if present
meta["site_name"] = (_og(soup, "og:site_name") or "").strip()
html_tag = soup.find("html")
meta["lang"] = (html_tag.get("lang") or "").strip() if html_tag else ""
# Final URL + domain
meta["fetched_url"] = final_url
meta["domain"] = _domain_of(final_url)
return meta
def _extract_main_text(html: str) -> Tuple[str, BeautifulSoup]:
"""
Use Readability to isolate the main article and turn it into clean text.
Returns (clean_text, soup_of_readable_html).
(Layman's terms: find the real article text and clean it.)
"""
# Simplified article HTML from Readability
doc = Document(html)
readable_html = doc.summary(html_partial=True)
# Parse simplified HTML
s = BeautifulSoup(readable_html, "lxml")
# Remove noisy tags
for sel in ["script", "style", "noscript", "iframe", "svg"]:
for tag in s.select(sel):
tag.decompose()
# Keep paragraphs, list items, and subheadings for structure without bloat
text_parts: List[str] = []
for p in s.find_all(["p", "li", "h2", "h3", "h4", "blockquote"]):
chunk = p.get_text(" ", strip=True)
if chunk:
text_parts.append(chunk)
clean_text = _normalize_whitespace("\n\n".join(text_parts))
return clean_text, s
def _extract_links_from_soup(soup: BeautifulSoup, base_url: str) -> str:
"""
Extract all links from the page and return as formatted text.
"""
links = []
for link in soup.find_all("a", href=True):
href = link.get("href")
text = link.get_text(strip=True)
# Make relative URLs absolute
if href.startswith("http"):
full_url = href
elif href.startswith("//"):
full_url = "https:" + href
elif href.startswith("/"):
from urllib.parse import urljoin
full_url = urljoin(base_url, href)
else:
from urllib.parse import urljoin
full_url = urljoin(base_url, href)
if text and href not in ["#", "javascript:void(0)"]:
links.append(f"- [{text}]({full_url})")
if not links:
return "No links found on this page."
# Add title if present
title = soup.find("title")
title_text = title.get_text(strip=True) if title else "Links from webpage"
return f"# {title_text}\n\n" + "\n".join(links)
def _fullpage_markdown_from_soup(full_soup: BeautifulSoup, base_url: str, strip_selectors: str = "") -> str:
# Remove custom selectors first if provided
if strip_selectors:
selectors = [s.strip() for s in strip_selectors.split(",") if s.strip()]
for selector in selectors:
try:
for element in full_soup.select(selector):
element.decompose()
except Exception:
# Invalid CSS selector, skip it
continue
# Remove unwanted elements globally
for element in full_soup.select("script, style, nav, footer, header, aside"):
element.decompose()
# Try common main-content containers, then fallback to body
main = (
full_soup.find("main")
or full_soup.find("article")
or full_soup.find("div", class_=re.compile(r"content|main|post|article", re.I))
or full_soup.find("body")
)
if not main:
return "No main content found on the webpage."
# Convert selected HTML to Markdown
markdown_text = md(str(main), heading_style="ATX")
# Clean up the markdown similar to web-scraper
markdown_text = re.sub(r"\n{3,}", "\n\n", markdown_text)
markdown_text = re.sub(r"\[\s*\]\([^)]*\)", "", markdown_text) # empty links
markdown_text = re.sub(r"[ \t]+", " ", markdown_text)
markdown_text = markdown_text.strip()
# Add title if present
title = full_soup.find("title")
if title and title.get_text(strip=True):
markdown_text = f"# {title.get_text(strip=True)}\n\n{markdown_text}"
return markdown_text or "No content could be extracted."
def _truncate_markdown(markdown: str, max_chars: int) -> Tuple[str, Dict[str, any]]:
"""
Truncate markdown content to a maximum character count while preserving structure.
Tries to break at paragraph boundaries when possible.
Returns:
Tuple[str, Dict]: (truncated_content, metadata_dict)
metadata_dict contains: truncated, returned_chars, total_chars_estimate, next_cursor
"""
total_chars = len(markdown)
if total_chars <= max_chars:
return markdown, {
"truncated": False,
"returned_chars": total_chars,
"total_chars_estimate": total_chars,
"next_cursor": None
}
# Find a good break point near the limit
truncated = markdown[:max_chars]
# Try to break at the end of a paragraph (double newline)
last_paragraph = truncated.rfind('\n\n')
if last_paragraph > max_chars * 0.7: # If we find a paragraph break in the last 30%
truncated = truncated[:last_paragraph]
cursor_pos = last_paragraph
# Try to break at the end of a sentence
elif '.' in truncated[-100:]: # Look for a period in the last 100 chars
last_period = truncated.rfind('.')
if last_period > max_chars * 0.8: # If we find a period in the last 20%
truncated = truncated[:last_period + 1]
cursor_pos = last_period + 1
else:
cursor_pos = len(truncated)
else:
cursor_pos = len(truncated)
metadata = {
"truncated": True,
"returned_chars": len(truncated),
"total_chars_estimate": total_chars,
"next_cursor": cursor_pos
}
truncated = truncated.rstrip()
# Add informative truncation notice
truncation_notice = (
f"\n\n---\n"
f"**Content Truncated:** Showing {metadata['returned_chars']:,} of {metadata['total_chars_estimate']:,} characters "
f"({(metadata['returned_chars']/metadata['total_chars_estimate']*100):.1f}%)\n"
f"**Next cursor:** {metadata['next_cursor']} (use this value with offset parameter for continuation)\n"
f"---"
)
return truncated + truncation_notice, metadata
def Fetch_Webpage( # <-- MCP tool #1 (Fetch)
url: Annotated[str, "The absolute URL to fetch (must return HTML)."],
max_chars: Annotated[int, "Maximum characters to return (0 = no limit, full page content)."] = 3000,
strip_selectors: Annotated[str, "CSS selectors to remove (comma-separated, e.g., '.header, .footer, nav')."] = "",
url_scraper: Annotated[bool, "Extract only links from the page instead of content."] = False,
offset: Annotated[int, "Character offset to start from (for pagination, use next_cursor from previous call)."] = 0,
) -> str:
"""
Fetch a web page and return it converted to Markdown format with configurable options.
This function retrieves a webpage and either converts its main content to clean Markdown
or extracts all links from the page. It automatically removes navigation, footers,
scripts, and other non-content elements, plus any custom selectors you specify.
Args:
url (str): The absolute URL to fetch (must return HTML).
max_chars (int): Maximum characters to return. Use 0 for no limit (full page).
strip_selectors (str): CSS selectors to remove before processing (comma-separated).
url_scraper (bool): If True, extract only links instead of content.
offset (int): Character offset to start from (for pagination, use next_cursor from previous call).
Returns:
str: Either the webpage content converted to Markdown or a list of all links,
depending on the url_scraper setting. Content is length-limited by max_chars
and includes detailed truncation metadata when content is truncated.
"""
_log_call_start("Fetch_Webpage", url=url, max_chars=max_chars, strip_selectors=strip_selectors, url_scraper=url_scraper, offset=offset)
if not url or not url.strip():
result = "Please enter a valid URL."
_log_call_end("Fetch_Webpage", _truncate_for_log(result))
return result
try:
resp = _http_get_enhanced(url)
resp.raise_for_status()
except requests.exceptions.RequestException as e:
result = f"An error occurred: {e}"
_log_call_end("Fetch_Webpage", _truncate_for_log(result))
return result
final_url = str(resp.url)
ctype = resp.headers.get("Content-Type", "")
if "html" not in ctype.lower():
result = f"Unsupported content type for extraction: {ctype or 'unknown'}"
_log_call_end("Fetch_Webpage", _truncate_for_log(result))
return result
# Decode to text
resp.encoding = resp.encoding or resp.apparent_encoding
html = resp.text
# Parse HTML
full_soup = BeautifulSoup(html, "lxml")
if url_scraper:
# Extract links mode
result = _extract_links_from_soup(full_soup, final_url)
# Apply offset and truncation for link extraction too
if offset > 0:
result = result[offset:]
if max_chars > 0 and len(result) > max_chars:
result, metadata = _truncate_markdown(result, max_chars)
else:
# Convert to markdown mode
full_result = _fullpage_markdown_from_soup(full_soup, final_url, strip_selectors)
# Apply offset if specified
if offset > 0:
if offset >= len(full_result):
result = f"Offset {offset} exceeds content length ({len(full_result)} characters). Content ends at position {len(full_result)}."
_log_call_end("Fetch_Webpage", _truncate_for_log(result))
return result
result = full_result[offset:]
else:
result = full_result
# Apply max_chars truncation if specified
if max_chars > 0 and len(result) > max_chars:
result, metadata = _truncate_markdown(result, max_chars)
# Adjust metadata to account for offset
if offset > 0:
metadata["total_chars_estimate"] = len(full_result)
metadata["next_cursor"] = offset + metadata["next_cursor"] if metadata["next_cursor"] else None
_log_call_end("Fetch_Webpage", f"chars={len(result)}, url_scraper={url_scraper}, offset={offset}")
return result
# ============================================
# DuckDuckGo Search: Enhanced with error handling & rate limiting
# ============================================
import asyncio
from datetime import datetime, timedelta
class RateLimiter:
def __init__(self, requests_per_minute: int = 30):
self.requests_per_minute = requests_per_minute
self.requests = []
def acquire(self):
"""Synchronous rate limiting for non-async context"""
now = datetime.now()
# Remove requests older than 1 minute
self.requests = [
req for req in self.requests if now - req < timedelta(minutes=1)
]
if len(self.requests) >= self.requests_per_minute:
# Wait until we can make another request
wait_time = 60 - (now - self.requests[0]).total_seconds()
if wait_time > 0:
time.sleep(max(1, wait_time)) # At least 1 second wait
self.requests.append(now)
# Global rate limiters
_search_rate_limiter = RateLimiter(requests_per_minute=20)
_fetch_rate_limiter = RateLimiter(requests_per_minute=25)
# ==============================
# Logging Helpers (print I/O to terminal)
# ==============================
def _truncate_for_log(value: str, limit: int = 500) -> str:
"""Truncate long strings for concise terminal logging."""
if len(value) <= limit:
return value
return value[:limit - 1] + "…"
def _serialize_input(val): # type: ignore[return-any]
"""Best-effort compact serialization of arbitrary input values for logging."""
try:
if isinstance(val, (str, int, float, bool)) or val is None:
return val
if isinstance(val, (list, tuple)):
return [_serialize_input(v) for v in list(val)[:10]] + (["…"] if len(val) > 10 else []) # type: ignore[index]
if isinstance(val, dict):
out = {}
for i, (k, v) in enumerate(val.items()):
if i >= 12:
out["…"] = "…"
break
out[str(k)] = _serialize_input(v)
return out
return repr(val)[:120]
except Exception:
return "<unserializable>"
def _log_call_start(func_name: str, **kwargs) -> None:
try:
compact = {k: _serialize_input(v) for k, v in kwargs.items()}
print(f"[TOOL CALL] {func_name} inputs: {json.dumps(compact, ensure_ascii=False)[:800]}", flush=True)
except Exception as e: # pragma: no cover - logging safety
print(f"[TOOL CALL] {func_name} (failed to log inputs: {e})", flush=True)
def _log_call_end(func_name: str, output_desc: str) -> None:
try:
print(f"[TOOL RESULT] {func_name} output: {output_desc}", flush=True)
except Exception as e: # pragma: no cover
print(f"[TOOL RESULT] {func_name} (failed to log output: {e})", flush=True)
# ==============================
# Deep Research helpers: slow-host detection
# ==============================
class SlowHost(Exception):
"""Marker exception for slow hosts (timeouts) to trigger requeue."""
pass
def _fetch_page_markdown_fast(url: str, max_chars: int = 3000, timeout: float = 10.0) -> str:
"""Fetch a single URL quickly; raise SlowHost on timeout.
Uses a shorter HTTP timeout to detect slow hosts, then reuses Fetch_Webpage
logic for conversion to Markdown. Returns empty string on non-timeout errors.
"""
try:
# Bypass global rate limiter here; we want Deep Research to control pacing.
resp = _http_get_enhanced(url, timeout=timeout, skip_rate_limit=True)
resp.raise_for_status()
except requests.exceptions.RequestException as e:
msg = str(e)
if "timed out" in msg.lower():
raise SlowHost(msg)
return ""
final_url = str(resp.url)
ctype = resp.headers.get("Content-Type", "")
if "html" not in ctype.lower():
return ""
# Decode to text and convert similar to Fetch_Webpage (lean path)
resp.encoding = resp.encoding or resp.apparent_encoding
html = resp.text
soup = BeautifulSoup(html, "lxml")
# Reuse fullpage conversion with default selectors
md_text = _fullpage_markdown_from_soup(soup, final_url, "")
if max_chars > 0 and len(md_text) > max_chars:
md_text, _ = _truncate_markdown(md_text, max_chars)
return md_text
def _extract_date_from_snippet(snippet: str) -> str:
"""
Extract publication date from search result snippet using common patterns.
"""
import re
from datetime import datetime
if not snippet:
return ""
# Common date patterns
date_patterns = [
# ISO format: 2023-12-25, 2023/12/25
r'\b(\d{4}[-/]\d{1,2}[-/]\d{1,2})\b',
# US format: Dec 25, 2023 | December 25, 2023
r'\b([A-Za-z]{3,9}\s+\d{1,2},?\s+\d{4})\b',
# EU format: 25 Dec 2023 | 25 December 2023
r'\b(\d{1,2}\s+[A-Za-z]{3,9}\s+\d{4})\b',
# Relative: "2 days ago", "1 week ago", "3 months ago"
r'\b(\d+\s+(?:day|week|month|year)s?\s+ago)\b',
# Common prefixes: "Published: ", "Updated: ", "Posted: "
r'(?:Published|Updated|Posted):\s*([^,\n]+?)(?:[,\n]|$)',
]
for pattern in date_patterns:
matches = re.findall(pattern, snippet, re.IGNORECASE)
if matches:
return matches[0].strip()
return ""
def _format_search_result(result: dict, search_type: str, index: int) -> list[str]:
"""
Format a single search result based on the search type.
Returns a list of strings to be joined with newlines.
"""
lines = []
if search_type == "text":
title = result.get("title", "").strip()
url = result.get("href", "").strip()
snippet = result.get("body", "").strip()
date = _extract_date_from_snippet(snippet)
lines.append(f"{index}. {title}")
lines.append(f" URL: {url}")
if snippet:
lines.append(f" Summary: {snippet}")
if date:
lines.append(f" Date: {date}")
elif search_type == "news":
title = result.get("title", "").strip()
url = result.get("url", "").strip()
body = result.get("body", "").strip()
date = result.get("date", "").strip()
source = result.get("source", "").strip()
lines.append(f"{index}. {title}")
lines.append(f" URL: {url}")
if source:
lines.append(f" Source: {source}")
if date:
lines.append(f" Date: {date}")
if body:
lines.append(f" Summary: {body}")
elif search_type == "images":
title = result.get("title", "").strip()
image_url = result.get("image", "").strip()
source_url = result.get("url", "").strip()
source = result.get("source", "").strip()
width = result.get("width", "")
height = result.get("height", "")
lines.append(f"{index}. {title}")
lines.append(f" Image: {image_url}")
lines.append(f" Source: {source_url}")
if source:
lines.append(f" Publisher: {source}")
if width and height:
lines.append(f" Dimensions: {width}x{height}")
elif search_type == "videos":
title = result.get("title", "").strip()
description = result.get("description", "").strip()
duration = result.get("duration", "").strip()
published = result.get("published", "").strip()
uploader = result.get("uploader", "").strip()
embed_url = result.get("embed_url", "").strip()
lines.append(f"{index}. {title}")
if embed_url:
lines.append(f" Video: {embed_url}")
if uploader:
lines.append(f" Uploader: {uploader}")
if duration:
lines.append(f" Duration: {duration}")
if published:
lines.append(f" Published: {published}")
if description:
lines.append(f" Description: {description}")
elif search_type == "books":
title = result.get("title", "").strip()
url = result.get("url", "").strip()
body = result.get("body", "").strip()
lines.append(f"{index}. {title}")
lines.append(f" URL: {url}")
if body:
lines.append(f" Description: {body}")
return lines
def Search_DuckDuckGo( # <-- MCP tool #2 (DDG Search)
query: Annotated[str, "The search query (supports operators like site:, quotes, OR)."],
max_results: Annotated[int, "Number of results to return (1–20)."] = 5,
page: Annotated[int, "Page number for pagination (1-based, each page contains max_results items)."] = 1,
search_type: Annotated[str, "Type of search: 'text' (web pages), 'news', 'images', 'videos', or 'books'."] = "text",
offset: Annotated[int, "Result offset to start from (overrides page if > 0, for precise continuation)."] = 0,
) -> str:
"""
Run a DuckDuckGo search and return formatted results with support for multiple content types.
Features smart fallback: if 'news' search returns no results, automatically retries with 'text'
search to catch sources like Hacker News that might not appear in news-specific results.
Args:
query (str): The search query string. Supports operators like site:, quotes for exact matching,
OR for alternatives, and other DuckDuckGo search syntax.
Examples:
- Basic search: "Python programming"
- Site search: "site:example.com"
- Exact phrase: "artificial intelligence"
- Exclude terms: "cats -dogs"
max_results (int): Number of results to return per page (1–20). Default: 5.
page (int): Page number for pagination (1-based). Default: 1. Ignored if offset > 0.
search_type (str): Type of search to perform:
- "text": Web pages (default)
- "news": News articles with dates and sources (with smart fallback to 'text')
- "images": Image results with dimensions and sources
- "videos": Video results with duration and upload info
- "books": Book search results
offset (int): Result offset to start from (0-based). If > 0, overrides page parameter
for precise continuation. Use this to pick up exactly where you left off.
Returns:
str: Search results formatted appropriately for the search type, with pagination info.
If 'news' search fails, results include a note about automatic fallback to 'text' search.
Includes next_offset information for easy continuation.
"""
_log_call_start("Search_DuckDuckGo", query=query, max_results=max_results, page=page, search_type=search_type, offset=offset)
if not query or not query.strip():
result = "No search query provided. Please enter a search term."
_log_call_end("Search_DuckDuckGo", _truncate_for_log(result))
return result
# Validate parameters
max_results = max(1, min(20, max_results))
page = max(1, page)
offset = max(0, offset)
valid_types = ["text", "news", "images", "videos", "books"]
if search_type not in valid_types:
search_type = "text"
# Calculate actual offset: use provided offset if > 0, otherwise calculate from page
if offset > 0:
actual_offset = offset
calculated_page = (offset // max_results) + 1
else:
actual_offset = (page - 1) * max_results
calculated_page = page
total_needed = actual_offset + max_results
# Track if we used fallback
used_fallback = False
original_search_type = search_type
def _perform_search(stype: str):
"""Perform the actual search with the given search type."""
try:
# Apply rate limiting to avoid being blocked
_search_rate_limiter.acquire()
# Perform search with timeout handling based on search type
with DDGS() as ddgs:
if stype == "text":
raw_gen = ddgs.text(query, max_results=total_needed + 10)
elif stype == "news":
raw_gen = ddgs.news(query, max_results=total_needed + 10)
elif stype == "images":
raw_gen = ddgs.images(query, max_results=total_needed + 10)
elif stype == "videos":
raw_gen = ddgs.videos(query, max_results=total_needed + 10)
elif stype == "books":
raw_gen = ddgs.books(query, max_results=total_needed + 10)
# Convert generator to list, handle case where no results are found
try:
return list(raw_gen)
except Exception as inner_e:
# If the generator fails (e.g., no results), return empty list
if "no results" in str(inner_e).lower() or "not found" in str(inner_e).lower():
return []
else:
raise inner_e
except Exception as e:
error_msg = f"Search failed: {str(e)[:200]}"
if "blocked" in str(e).lower() or "rate" in str(e).lower():
error_msg = "Search temporarily blocked due to rate limiting. Please try again in a few minutes."
elif "timeout" in str(e).lower():
error_msg = "Search timed out. Please try again with a simpler query."
elif "network" in str(e).lower() or "connection" in str(e).lower():
error_msg = "Network connection error. Please check your internet connection and try again."
elif "no results" in str(e).lower() or "not found" in str(e).lower():
# This is expected for some searches, return empty list
return []
raise Exception(error_msg)
# Try the primary search
try:
raw = _perform_search(search_type)
except Exception as e:
result = f"Error: {str(e)}"
_log_call_end("Search_DuckDuckGo", _truncate_for_log(result))
return result
# Smart fallback: if news search returns empty and we haven't tried text yet, try text search
if not raw and search_type == "news":
try:
raw = _perform_search("text")
if raw: # Only mark as fallback if we actually got results
used_fallback = True
search_type = "text" # Update for result formatting
except Exception:
# If fallback also fails, continue with empty results from original search
pass
if not raw:
fallback_note = " (also tried 'text' search as fallback)" if original_search_type == "news" and used_fallback else ""
result = f"No {original_search_type} results found for query: {query}{fallback_note}"
_log_call_end("Search_DuckDuckGo", _truncate_for_log(result))
return result
# Apply pagination by slicing the results
paginated_results = raw[actual_offset:actual_offset + max_results]
if not paginated_results:
if actual_offset >= len(raw):
result = f"Offset {actual_offset} exceeds available results ({len(raw)} total). Try offset=0 to start from beginning."
else:
result = f"No {original_search_type} results found on page {calculated_page} for query: {query}. Try page 1 or reduce page number."
_log_call_end("Search_DuckDuckGo", _truncate_for_log(result))
return result
# Format results based on search type
total_available = len(raw)
start_num = actual_offset + 1
end_num = actual_offset + len(paginated_results)
next_offset = actual_offset + len(paginated_results)
# Create header with fallback notification if applicable
search_label = original_search_type.title()
if used_fallback:
search_label += " → Text (Smart Fallback)"
# Show both page and offset information for clarity
pagination_info = f"Page {calculated_page}"
if offset > 0:
pagination_info = f"Offset {actual_offset} (≈ {pagination_info})"
lines = [f"{search_label} search results for: {query}"]
if used_fallback:
lines.append("📍 Note: News search returned no results, automatically searched general web content instead")
lines.append(f"{pagination_info} (results {start_num}-{end_num} of ~{total_available}+ available)\n")
for i, result in enumerate(paginated_results, start_num):
result_lines = _format_search_result(result, search_type, i)
lines.extend(result_lines)
lines.append("") # Empty line between results
# Add pagination/continuation hints
if total_available > end_num:
lines.append(f"💡 More results available:")
lines.append(f" • Next page: page={calculated_page + 1}")
lines.append(f" • Next offset: offset={next_offset}")
lines.append(f" • Use offset={next_offset} to continue exactly from result {next_offset + 1}")
result = "\n".join(lines)
search_info = f"type={original_search_type}"
if used_fallback:
search_info += "→text"
_log_call_end("Search_DuckDuckGo", f"{search_info} page={calculated_page} offset={actual_offset} results={len(paginated_results)} chars={len(result)}")
return result
# ======================================
# Code Execution: Python (MCP tool #3)
# ======================================
def Execute_Python(code: Annotated[str, "Python source code to run; stdout is captured and returned."]) -> str:
"""
Execute arbitrary Python code and return captured stdout or an error message.
Args:
code (str): Python source code to run; stdout is captured and returned.
Returns:
str: Combined stdout produced by the code, or the exception text if
execution failed.
"""
_log_call_start("Execute_Python", code=_truncate_for_log(code or "", 300))
if code is None:
result = "No code provided."
_log_call_end("Execute_Python", result)
return result
old_stdout = sys.stdout
redirected_output = sys.stdout = StringIO()
try:
exec(code)
result = redirected_output.getvalue()
except Exception as e:
result = str(e)
finally:
sys.stdout = old_stdout
_log_call_end("Execute_Python", _truncate_for_log(result))
return result
# ==========================
# Kokoro TTS (MCP tool #4)
# ==========================
_KOKORO_STATE = {
"initialized": False,
"device": "cpu",
"model": None,
"pipelines": {},
}
def get_kokoro_voices():
"""Get comprehensive list of available Kokoro voice IDs (54 total)."""
try:
from huggingface_hub import list_repo_files
# Get voice files from the Kokoro repository
files = list_repo_files('hexgrad/Kokoro-82M')
voice_files = [f for f in files if f.endswith('.pt') and f.startswith('voices/')]
voices = [f.replace('voices/', '').replace('.pt', '') for f in voice_files]
return sorted(voices) if voices else _get_fallback_voices()
except Exception:
return _get_fallback_voices()
def _get_fallback_voices():
"""Return comprehensive fallback list of known Kokoro voices (54 total)."""
return [
# American Female (11 voices)
"af_alloy", "af_aoede", "af_bella", "af_heart", "af_jessica",
"af_kore", "af_nicole", "af_nova", "af_river", "af_sarah", "af_sky",
# American Male (9 voices)
"am_adam", "am_echo", "am_eric", "am_fenrir", "am_liam",
"am_michael", "am_onyx", "am_puck", "am_santa",
# British Female (4 voices)
"bf_alice", "bf_emma", "bf_isabella", "bf_lily",
# British Male (4 voices)
"bm_daniel", "bm_fable", "bm_george", "bm_lewis",
# European Female/Male (3 voices)
"ef_dora", "em_alex", "em_santa",
# French Female (1 voice)
"ff_siwis",
# Hindi Female/Male (4 voices)
"hf_alpha", "hf_beta", "hm_omega", "hm_psi",
# Italian Female/Male (2 voices)
"if_sara", "im_nicola",
# Japanese Female/Male (5 voices)
"jf_alpha", "jf_gongitsune", "jf_nezumi", "jf_tebukuro", "jm_kumo",
# Portuguese Female/Male (3 voices)
"pf_dora", "pm_alex", "pm_santa",
# Chinese Female/Male (8 voices)
"zf_xiaobei", "zf_xiaoni", "zf_xiaoxiao", "zf_xiaoyi",
"zm_yunjian", "zm_yunxi", "zm_yunxia", "zm_yunyang"
]
def _init_kokoro() -> None:
"""Lazy-initialize Kokoro model and pipelines on first use.
Tries CUDA if torch is present and available; falls back to CPU. Keeps a
minimal English pipeline and custom lexicon tweak for the word "kokoro".
"""
if _KOKORO_STATE["initialized"]:
return
if KModel is None or KPipeline is None:
raise RuntimeError(
"Kokoro is not installed. Please install the 'kokoro' package (>=0.9.4)."
)
device = "cpu"
if torch is not None:
try:
if torch.cuda.is_available(): # type: ignore[attr-defined]
device = "cuda"
except Exception:
device = "cpu"
model = KModel().to(device).eval()
pipelines = {"a": KPipeline(lang_code="a", model=False)}
# Custom pronunciation
try:
pipelines["a"].g2p.lexicon.golds["kokoro"] = "kˈOkəɹO"
except Exception:
pass
_KOKORO_STATE.update(
{
"initialized": True,
"device": device,
"model": model,
"pipelines": pipelines,
}
)
def List_Kokoro_Voices() -> List[str]:
"""
Get a list of all available Kokoro voice identifiers.
This MCP tool helps clients discover the 54 available voice options
for the Generate_Speech tool.
Returns:
List[str]: A list of voice identifiers (e.g., ["af_heart", "am_adam", "bf_alice", ...])
Voice naming convention:
- First 2 letters: Language/Region (af=American Female, am=American Male, bf=British Female, etc.)
- Following letters: Voice name (heart, adam, alice, etc.)
Available categories:
- American Female/Male (20 voices)
- British Female/Male (8 voices)
- European Female/Male (3 voices)
- French Female (1 voice)
- Hindi Female/Male (4 voices)
- Italian Female/Male (2 voices)
- Japanese Female/Male (5 voices)
- Portuguese Female/Male (3 voices)
- Chinese Female/Male (8 voices)
"""
return get_kokoro_voices()
def Generate_Speech( # <-- MCP tool #4 (Generate Speech)
text: Annotated[str, "The text to synthesize (English)."],
speed: Annotated[float, "Speech speed multiplier in 0.5–2.0; 1.0 = normal speed."] = 1.25,
voice: Annotated[str, "Voice identifier from 54 available options."] = "af_heart",
) -> Tuple[int, np.ndarray]:
"""
Synthesize speech from text using the Kokoro-82M TTS model.
This function returns raw audio suitable for a Gradio Audio component and is
also exposed as an MCP tool. It supports 54 different voices across multiple
languages and accents including American, British, European, Hindi, Italian,
Japanese, Portuguese, and Chinese speakers.
Args:
text (str): The text to synthesize. Works best with English but supports multiple languages.
speed (float): Speech speed multiplier in 0.5–2.0; 1.0 = normal speed. Default: 1.25 (slightly brisk).
voice (str): Voice identifier from 54 available options. Default: 'af_heart'.
Returns:
A tuple of (sample_rate_hz, audio_waveform) where:
- sample_rate_hz: int sample rate in Hz (24_000)
- audio_waveform: numpy.ndarray float32 mono waveform in range [-1, 1]
"""
_log_call_start("Generate_Speech", text=_truncate_for_log(text, 200), speed=speed, voice=voice)
if not text or not text.strip():
try:
_log_call_end("Generate_Speech", "error=empty text")
finally:
pass
raise gr.Error("Please provide non-empty text to synthesize.")
_init_kokoro()
model = _KOKORO_STATE["model"]
pipelines = _KOKORO_STATE["pipelines"]
pipeline = pipelines.get("a")
if pipeline is None:
raise gr.Error("Kokoro English pipeline not initialized.")
# Process ALL segments for longer audio generation
audio_segments = []
pack = pipeline.load_voice(voice)
try:
# Get all segments first to show progress for long text
segments = list(pipeline(text, voice, speed))
total_segments = len(segments)
# Iterate through ALL segments instead of just the first one
for segment_idx, (text_chunk, ps, _) in enumerate(segments):
ref_s = pack[len(ps) - 1]
try:
audio = model(ps, ref_s, float(speed))
audio_segments.append(audio.detach().cpu().numpy())
# For very long text (>10 segments), show progress every few segments
if total_segments > 10 and (segment_idx + 1) % 5 == 0:
print(f"Progress: Generated {segment_idx + 1}/{total_segments} segments...")
except Exception as e:
raise gr.Error(f"Error generating audio for segment {segment_idx + 1}: {str(e)}")
if not audio_segments:
raise gr.Error("No audio was generated (empty synthesis result).")
# Concatenate all segments to create the complete audio
if len(audio_segments) == 1:
final_audio = audio_segments[0]
else:
final_audio = np.concatenate(audio_segments, axis=0)
# For multi-segment audio, provide completion info
duration = len(final_audio) / 24_000
if total_segments > 1:
print(f"Completed: {total_segments} segments concatenated into {duration:.1f} seconds of audio")
# Success logging & return
_log_call_end("Generate_Speech", f"samples={final_audio.shape[0]} duration_sec={len(final_audio)/24_000:.2f}")
return 24_000, final_audio
except gr.Error as e:
_log_call_end("Generate_Speech", f"gr_error={str(e)}")
raise # Re-raise
except Exception as e:
_log_call_end("Generate_Speech", f"error={str(e)[:120]}")
raise gr.Error(f"Error during speech generation: {str(e)}")
# ==========================
# JSON Memory System (MCP tools #7–#10 if enabled)
# ==========================
# Implementation goals (aligned with Gradio MCP docs):
# * Each function has a rich docstring (used for tool description)
# * Type hints + Annotated param docs become the schema
# * Zero external dependencies (pure stdlib JSON file persistence)
# * Safe concurrent access via a process‑local lock
# * Human‑readable & recoverable even if file becomes corrupted
MEMORY_FILE = os.path.join(os.path.dirname(__file__), "memories.json")
_MEMORY_LOCK = threading.RLock()
_MAX_MEMORIES = 10_000 # soft cap to avoid unbounded growth
def _now_iso() -> str:
return datetime.utcnow().strftime("%Y-%m-%d %H:%M:%S")
def _load_memories() -> List[Dict[str, str]]:
"""Internal helper: load memory list from disk.
Returns an empty list if the file does not exist or is unreadable.
If the JSON is corrupted, a *.corrupt backup is written once and a
fresh empty list is returned (fail‑open philosophy for tool usage).
"""
if not os.path.exists(MEMORY_FILE):
return []
try:
with open(MEMORY_FILE, "r", encoding="utf-8") as f:
data = json.load(f)
if isinstance(data, list):
# Filter only dict items containing required keys if present
cleaned: List[Dict[str, str]] = []
for item in data:
if isinstance(item, dict) and "id" in item and "text" in item:
cleaned.append(item)
return cleaned
return []
except Exception:
# Backup corrupted file once
try:
backup = MEMORY_FILE + ".corrupt"
if not os.path.exists(backup):
os.replace(MEMORY_FILE, backup)
except Exception:
pass
return []
def _save_memories(memories: List[Dict[str, str]]) -> None:
"""Persist memory list atomically to disk (write temp then replace)."""
tmp_path = MEMORY_FILE + ".tmp"
with open(tmp_path, "w", encoding="utf-8") as f:
json.dump(memories, f, ensure_ascii=False, indent=2)
os.replace(tmp_path, MEMORY_FILE)
def _mem_save(
text: Annotated[str, "Raw textual content to remember (will be stored verbatim)."],
tags: Annotated[str, "Optional comma-separated tags for lightweight categorization (e.g. 'user, preference')."] = "",
) -> str:
"""(Internal) Persist a new memory record.
Summary:
Adds a memory object to the local JSON store (no external database).
Stored Fields:
- id (str, UUID4)
- text (str, verbatim user content)
- timestamp (UTC "YYYY-MM-DD HH:MM:SS")
- tags (str, original comma-separated tag string)
Behavior / Rules:
1. Whitespace is trimmed; empty text is rejected.
2. If the most recent existing memory has identical text, the new one is skipped (light dedupe heuristic).
3. When total entries exceed _MAX_MEMORIES, oldest entries are pruned (soft cap).
4. Operation is protected by an in‑process reentrant lock only (no cross‑process locking).
Returns:
str: Human readable confirmation containing the new memory UUID (full or prefix
Security / Privacy:
Data is plaintext JSON on local disk; do NOT store secrets or regulated data.
"""
text_clean = (text or "").strip()
if not text_clean:
return "Error: memory text is empty."
with _MEMORY_LOCK:
memories = _load_memories()
if memories and memories[-1].get("text") == text_clean:
return "Skipped: identical to last stored memory."
mem_id = str(uuid.uuid4())
entry = {
"id": mem_id,
"text": text_clean,
"timestamp": _now_iso(),
"tags": tags.strip(),
}
memories.append(entry)
if len(memories) > _MAX_MEMORIES:
# Drop oldest overflow
overflow = len(memories) - _MAX_MEMORIES
memories = memories[overflow:]
_save_memories(memories)
return f"Memory saved: {mem_id}"
def _mem_list(
limit: Annotated[int, "Maximum number of most recent memories to return (1–200)."] = 20,
include_tags: Annotated[bool, "If true, include tags column in output."] = True,
) -> str:
"""(Internal) List most recent memories.
Parameters:
limit (int): Max rows to return; clamped to [1, 200].
include_tags (bool): Include tags section when True.
Output Format (one per line):
<uuid_prefix> [YYYY-MM-DD HH:MM:SS] <text> | tags: <tag list>
(Tag column omitted if empty or include_tags=False.)
Returns:
str: Joined newline string or a friendly "No memories stored." message.
"""
limit = max(1, min(200, limit))
with _MEMORY_LOCK:
memories = _load_memories()
if not memories:
return "No memories stored yet."
# Already chronological (append order); display newest first
chosen = memories[-limit:][::-1]
lines: List[str] = []
for m in chosen:
base = f"{m['id'][:8]} [{m.get('timestamp','?')}] {m.get('text','')}"
if include_tags and m.get("tags"):
base += f" | tags: {m['tags']}"
lines.append(base)
omitted = len(memories) - len(chosen)
if omitted > 0:
lines.append(f"… ({omitted} older memorie{'s' if omitted!=1 else ''} omitted; total={len(memories)})")
return "\n".join(lines)
def _parse_search_query(query: str) -> Dict[str, List[str]]:
"""Parse a search query into structured components.
Supports:
- tag:name - search for specific tag
- AND/OR operators (case-insensitive)
- Regular text terms
- Implicit AND between terms when no operator specified
Examples:
'tag:work' -> {'tag_terms': ['work'], 'text_terms': [], 'operator': 'and'}
'tag:work AND tag:project' -> {'tag_terms': ['work', 'project'], 'text_terms': [], 'operator': 'and'}
'tag:personal OR tag:todo' -> {'tag_terms': ['personal', 'todo'], 'text_terms': [], 'operator': 'or'}
'meeting tag:work' -> {'tag_terms': ['work'], 'text_terms': ['meeting'], 'operator': 'and'}
'tag:urgent OR important' -> {'tag_terms': ['urgent'], 'text_terms': ['important'], 'operator': 'or'}
Returns:
Dict with keys: 'tag_terms', 'text_terms', 'operator' (and/or)
"""
import re
# Initialize result
result = {
'tag_terms': [],
'text_terms': [],
'operator': 'and' # default
}
if not query or not query.strip():
return result
# Normalize whitespace and detect OR operator
query = re.sub(r'\s+', ' ', query.strip())
if re.search(r'\bOR\b', query, re.IGNORECASE):
result['operator'] = 'or'
# Split on OR (case-insensitive)
parts = re.split(r'\s+OR\s+', query, flags=re.IGNORECASE)
else:
# Split on AND (case-insensitive) or just whitespace
parts = re.split(r'\s+(?:AND\s+)?', query, flags=re.IGNORECASE)
# Remove empty AND tokens that might have been left
parts = [p for p in parts if p.strip() and p.strip().upper() != 'AND']
# Process each part
for part in parts:
part = part.strip()
if not part:
continue
# Check if it's a tag query
tag_match = re.match(r'^tag:(.+)$', part, re.IGNORECASE)
if tag_match:
tag_name = tag_match.group(1).strip()
if tag_name:
result['tag_terms'].append(tag_name.lower())
else:
# Regular text term
result['text_terms'].append(part.lower())
return result
def _match_memory_with_query(memory: Dict[str, str], parsed_query: Dict[str, List[str]]) -> bool:
"""Check if a memory matches the parsed search query."""
tag_terms = parsed_query['tag_terms']
text_terms = parsed_query['text_terms']
operator = parsed_query['operator']
# If no terms, no match
if not tag_terms and not text_terms:
return False
# Get memory content (case-insensitive)
memory_text = memory.get('text', '').lower()
memory_tags = memory.get('tags', '').lower()
# Split memory tags into individual tags
memory_tag_list = [tag.strip() for tag in memory_tags.split(',') if tag.strip()]
# Check tag matches
tag_matches = []
for tag_term in tag_terms:
# Check if tag_term matches any of the memory's tags
tag_matches.append(any(tag_term in tag for tag in memory_tag_list))
# Check text matches
text_matches = []
combined_text = memory_text + ' ' + memory_tags # For backward compatibility
for text_term in text_terms:
text_matches.append(text_term in combined_text)
# Combine all matches
all_matches = tag_matches + text_matches
if not all_matches:
return False
# Apply operator logic
if operator == 'or':
return any(all_matches)
else: # 'and'
return all(all_matches)
def _mem_search(
query: Annotated[str, "Advanced search with tag:name syntax, AND/OR operators, and text terms."],
limit: Annotated[int, "Maximum number of matches (1–200)."] = 20,
) -> str:
"""(Internal) Enhanced search with tag queries and boolean operators.
Search Syntax:
- tag:name - search for specific tag
- AND/OR operators (case-insensitive, default is AND)
- Regular text terms search in text content and tags
- Examples:
* 'tag:work' - memories with 'work' tag
* 'tag:work AND tag:project' - memories with both tags
* 'tag:personal OR tag:todo' - memories with either tag
* 'meeting tag:work' - memories with "meeting" in text and 'work' tag
* 'tag:urgent OR important' - memories with 'urgent' tag OR "important" anywhere
Parameters:
query (str): Enhanced query string with tag: syntax and AND/OR operators.
limit (int): Max rows to return; clamped to [1, 200].
Returns:
str: Formatted lines identical to _mem_list output or "No matches".
"""
q = (query or "").strip()
if not q:
return "Error: empty query."
# Parse the enhanced query
parsed_query = _parse_search_query(q)
if not parsed_query['tag_terms'] and not parsed_query['text_terms']:
return "Error: no valid search terms found."
limit = max(1, min(200, limit))
with _MEMORY_LOCK:
memories = _load_memories()
# Search with enhanced logic
matches: List[Dict[str, str]] = []
total_matches = 0
for m in reversed(memories): # newest first
if _match_memory_with_query(m, parsed_query):
total_matches += 1
if len(matches) < limit:
matches.append(m)
if not matches:
return f"No matches for: {query}"
lines = [
f"{m['id'][:8]} [{m.get('timestamp','?')}] {m.get('text','')}" + (f" | tags: {m['tags']}" if m.get('tags') else "")
for m in matches
]
omitted = total_matches - len(matches)
if omitted > 0:
lines.append(f"… ({omitted} additional match{'es' if omitted!=1 else ''} omitted; total_matches={total_matches})")
return "\n".join(lines)
def _mem_delete(
memory_id: Annotated[str, "Full UUID or a unique prefix (>=4 chars) of the memory id to delete."],
) -> str:
"""(Internal) Delete one memory by UUID or unique prefix.
Parameters:
memory_id (str): Full UUID4 (preferred) OR a unique prefix (>=4 chars). If prefix is ambiguous, no deletion occurs.
Returns:
str: One of: success message, ambiguity notice, or not-found message.
Safety:
Ambiguous prefixes are rejected to prevent accidental mass deletion.
"""
key = (memory_id or "").strip().lower()
if len(key) < 4:
return "Error: supply at least 4 characters of the id."
with _MEMORY_LOCK:
memories = _load_memories()
matched = [m for m in memories if m["id"].lower().startswith(key)]
if not matched:
return "Memory not found."
if len(matched) > 1 and key != matched[0]["id"].lower():
# ambiguous prefix
sample = ", ".join(m["id"][:8] for m in matched[:5])
more = "…" if len(matched) > 5 else ""
return f"Ambiguous prefix (matches {len(matched)} ids: {sample}{more}). Provide more characters."
# Unique match
target_id = matched[0]["id"]
memories = [m for m in memories if m["id"] != target_id]
_save_memories(memories)
return f"Deleted memory: {target_id}"
# ======================
# UI: four-tab interface
# ======================
# --- Fetch tab (compact controllable extraction) ---
fetch_interface = gr.Interface(
fn=Fetch_Webpage,
inputs=[
gr.Textbox(label="URL", placeholder="https://example.com/article"),
gr.Slider(
minimum=0,
maximum=20000,
value=3000,
step=100,
label="Max Characters",
info="0 = no limit (full page), default 3000"
),
gr.Textbox(
label="Strip Selectors",
placeholder=".header, .footer, nav, .sidebar",
value="",
info="CSS selectors to remove (comma-separated)"
),
gr.Checkbox(
label="URL Scraper",
value=False,
info="Extract only links instead of content"
),
gr.Slider(
minimum=0,
maximum=100000,
value=0,
step=100,
label="Offset",
info="Character offset to start from (use next_cursor from previous call for pagination)"
),
],
outputs=gr.Markdown(label="Extracted Content"),
title="Fetch Webpage",
description=(
"<div style=\"text-align:center\">Convert any webpage to clean Markdown format with precision controls, or extract all links. Supports custom element removal, length limits, and pagination with offset.</div>"
),
api_description=(
"Fetch a web page and return it converted to Markdown format or extract links with configurable options. "
"Includes enhanced truncation with detailed metadata and pagination support via offset parameter. "
"Parameters: url (str - absolute URL), max_chars (int - 0=no limit, default 3000), "
"strip_selectors (str - CSS selectors to remove, comma-separated), "
"url_scraper (bool - extract only links instead of content, default False), "
"offset (int - character offset for pagination, use next_cursor from previous call). "
"When content is truncated, returns detailed metadata including truncated status, character counts, "
"and next_cursor for continuation. When url_scraper=True, returns formatted list of all links found on the page."
),
flagging_mode="never",
)
# --- Simplified DDG tab (readable output only) ---
concise_interface = gr.Interface(
fn=Search_DuckDuckGo,
inputs=[
gr.Textbox(label="Query", placeholder="topic OR site:example.com"),
gr.Slider(minimum=1, maximum=20, value=5, step=1, label="Max results"),
gr.Slider(minimum=1, maximum=10, value=1, step=1, label="Page", info="Page number for pagination (ignored if offset > 0)"),
gr.Radio(
label="Search Type",
choices=["text", "news", "images", "videos", "books"],
value="text",
info="Type of content to search for"
),
gr.Slider(
minimum=0,
maximum=1000,
value=0,
step=1,
label="Offset",
info="Result offset to start from (overrides page if > 0, use next_offset from previous search)"
),
],
outputs=gr.Textbox(label="Search Results", interactive=False),
title="DuckDuckGo Search",
description=(
"<div style=\"text-align:center\">Multi-type web search with readable output format, date detection, and flexible pagination. Supports text, news, images, videos, and books. Features smart fallback for news searches and precise offset control.</div>"
),
api_description=(
"Run a DuckDuckGo search with support for multiple content types and return formatted results. "
"Features smart fallback: if 'news' search returns no results, automatically retries with 'text' search "
"to catch sources like Hacker News that might not appear in news-specific results. "
"Supports advanced search operators: site: for specific domains, quotes for exact phrases, "
"OR for alternatives, and - to exclude terms. Examples: 'Python programming', 'site:example.com', "
"'\"artificial intelligence\"', 'cats -dogs', 'Python OR JavaScript'. "
"Parameters: query (str), max_results (int, 1-20), page (int, 1-based pagination), "
"search_type (str: text/news/images/videos/books), offset (int, result offset for precise continuation). "
"If offset > 0, it overrides the page parameter. Returns appropriately formatted results with metadata, "
"pagination hints, and next_offset information for each content type."
),
flagging_mode="never",
submit_btn="Search",
)
##
# --- Execute Python tab (simple code interpreter) ---
code_interface = gr.Interface(
fn=Execute_Python,
inputs=gr.Code(label="Python Code", language="python"),
outputs=gr.Textbox(label="Output"),
title="Python Code Executor",
description=(
"<div style=\"text-align:center\">Execute Python code and see the output.</div>"
),
api_description=(
"Execute arbitrary Python code and return captured stdout or an error message. "
"Supports any valid Python code including imports, variables, functions, loops, and calculations. "
"Examples: 'print(2+2)', 'import math; print(math.sqrt(16))', 'for i in range(3): print(i)'. "
"Parameters: code (str - Python source code to execute). "
"Returns: Combined stdout output or exception text if execution fails."
),
flagging_mode="never",
)
CSS_STYLES = """
/* Style only the top-level app title to avoid affecting headings elsewhere */
.app-title {
text-align: center;
/* Ensure main title appears first, then our two subtitle lines */
display: grid;
justify-items: center;
}
/* Place bold tools list on line 2, normal auth note on line 3 (below title) */
.app-title::before {
grid-row: 2;
content: "Fetch Webpage | Search DuckDuckGo | Python Interpreter | Memory Manager | Kokoro TTS | Image Generation | Video Generation | Deep Research";
display: block;
font-size: 1rem;
font-weight: 700;
opacity: 0.9;
margin-top: 6px;
white-space: pre-wrap;
}
.app-title::after {
grid-row: 3;
content: "General purpose tools useful for any agent.";
display: block;
font-size: 1rem;
font-weight: 400;
opacity: 0.9;
margin-top: 2px;
white-space: pre-wrap;
}
/* Historical safeguard: if any h1 appears inside tabs, don't attach pseudo content */
.gradio-container [role=\"tabpanel\"] h1::before,
.gradio-container [role=\"tabpanel\"] h1::after {
content: none !important;
}
/* Information accordion - modern info cards */
.info-accordion {
margin: 8px 0 2px;
}
.info-grid {
display: grid;
gap: 12px;
/* Force a 2x2 layout on medium+ screens */
grid-template-columns: repeat(2, minmax(0, 1fr));
align-items: stretch;
}
/* On narrow screens, stack into a single column */
@media (max-width: 800px) {
.info-grid {
grid-template-columns: 1fr;
}
}
.info-card {
display: flex;
gap: 14px;
padding: 14px 16px;
border: 1px solid rgba(255, 255, 255, 0.08);
background: linear-gradient(180deg, rgba(255,255,255,0.05), rgba(255,255,255,0.03));
border-radius: 12px;
box-shadow: 0 1px 2px rgba(0, 0, 0, 0.04);
position: relative;
overflow: hidden;
backdrop-filter: blur(2px);
}
.info-card::before {
content: "";
position: absolute;
inset: 0;
border-radius: 12px;
pointer-events: none;
background: linear-gradient(90deg, rgba(99,102,241,0.06), rgba(59,130,246,0.05));
}
.info-card__icon {
font-size: 24px;
flex: 0 0 28px;
line-height: 1;
filter: saturate(1.1);
}
.info-card__body {
min-width: 0;
}
.info-card__body h3 {
margin: 0 0 6px;
font-size: 1.05rem;
}
.info-card__body p {
margin: 6px 0;
opacity: 0.95;
}
/* Readable code blocks inside info cards */
.info-card pre {
margin: 8px 0;
padding: 10px 12px;
background: rgba(20, 20, 30, 0.55);
border: 1px solid rgba(255, 255, 255, 0.08);
border-radius: 10px;
overflow-x: auto;
white-space: pre;
}
.info-card code {
font-family: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, "Liberation Mono", monospace;
font-size: 0.95em;
}
.info-card pre code {
display: block;
}
.info-list {
margin: 6px 0 0 18px;
padding: 0;
}
.info-hint {
margin-top: 8px;
font-size: 0.9em;
opacity: 0.9;
}
/* Light theme adjustments */
@media (prefers-color-scheme: light) {
.info-card {
border-color: rgba(0, 0, 0, 0.08);
background: linear-gradient(180deg, rgba(255,255,255,0.95), rgba(255,255,255,0.9));
}
.info-card::before {
background: linear-gradient(90deg, rgba(99,102,241,0.08), rgba(59,130,246,0.06));
}
.info-card pre {
background: rgba(245, 246, 250, 0.95);
border-color: rgba(0, 0, 0, 0.08);
}
}
/* Tabs - modern, evenly distributed full-width buttons */
.gradio-container [role="tablist"] {
display: flex;
gap: 8px;
flex-wrap: nowrap;
align-items: stretch;
width: 100%;
}
.gradio-container [role="tab"] {
flex: 1 1 0;
min-width: 0; /* allow shrinking to fit */
display: inline-flex;
justify-content: center;
align-items: center;
padding: 10px 12px;
border-radius: 10px;
border: 1px solid rgba(255, 255, 255, 0.08);
background: linear-gradient(180deg, rgba(255,255,255,0.05), rgba(255,255,255,0.03));
transition: background .2s ease, border-color .2s ease, box-shadow .2s ease, transform .06s ease;
overflow: hidden;
white-space: nowrap;
text-overflow: ellipsis;
}
.gradio-container [role="tab"]:hover {
border-color: rgba(99,102,241,0.28);
background: linear-gradient(180deg, rgba(99,102,241,0.10), rgba(59,130,246,0.08));
}
.gradio-container [role="tab"][aria-selected="true"] {
border-color: rgba(99,102,241,0.35);
box-shadow: inset 0 0 0 1px rgba(99,102,241,0.25), 0 1px 2px rgba(0,0,0,0.25);
background: linear-gradient(180deg, rgba(99,102,241,0.18), rgba(59,130,246,0.14));
color: rgba(255, 255, 255, 0.95) !important;
}
.gradio-container [role="tab"]:active {
transform: translateY(0.5px);
}
.gradio-container [role="tab"]:focus-visible {
outline: none;
box-shadow: 0 0 0 2px rgba(59,130,246,0.35);
}
@media (prefers-color-scheme: light) {
.gradio-container [role="tab"] {
border-color: rgba(0, 0, 0, 0.08);
background: linear-gradient(180deg, rgba(255,255,255,0.95), rgba(255,255,255,0.90));
}
.gradio-container [role="tab"]:hover {
border-color: rgba(99,102,241,0.25);
background: linear-gradient(180deg, rgba(99,102,241,0.08), rgba(59,130,246,0.06));
}
.gradio-container [role="tab"][aria-selected="true"] {
border-color: rgba(99,102,241,0.35);
background: linear-gradient(180deg, rgba(99,102,241,0.16), rgba(59,130,246,0.12));
color: rgba(0, 0, 0, 0.85) !important;
}
}
"""
# --- Kokoro TTS tab (text to speech) ---
available_voices = get_kokoro_voices()
kokoro_interface = gr.Interface(
fn=Generate_Speech,
inputs=[
gr.Textbox(label="Text", placeholder="Type text to synthesize…", lines=4),
gr.Slider(minimum=0.5, maximum=2.0, value=1.25, step=0.1, label="Speed"),
gr.Dropdown(
label="Voice",
choices=available_voices,
value="af_heart",
info="Select from 54 available voices across multiple languages and accents"
),
],
outputs=gr.Audio(label="Audio", type="numpy", format="wav", show_download_button=True),
title="Kokoro TTS",
description=(
"<div style=\"text-align:center\">Generate speech with Kokoro-82M. Supports multiple languages and accents. Runs on CPU or CUDA if available.</div>"
),
api_description=(
"Synthesize speech from text using Kokoro-82M TTS model. Returns (sample_rate, waveform) suitable for playback. "
"Supports unlimited text length by processing all segments. Voice examples: 'af_heart' (US female), 'am_onyx' (US male), "
"'bf_emma' (British female), 'af_sky' (US female), 'af_nicole' (US female), "
"Parameters: text (str), speed (float 0.5–2.0, default 1.25x), voice (str from 54 available options, default 'af_heart'). "
"Return the generated media to the user in this format ``"
),
flagging_mode="never",
)
def Memory_Manager(
action: Annotated[Literal["save","list","search","delete"], "Action to perform: save | list | search | delete"],
text: Annotated[Optional[str], "Text content (Save only)"] = None,
tags: Annotated[Optional[str], "Comma-separated tags (Save only)"] = None,
query: Annotated[Optional[str], "Enhanced search with tag:name syntax, AND/OR operators (Search only)"] = None,
limit: Annotated[int, "Max results (List/Search only)"] = 20,
memory_id: Annotated[Optional[str], "Full UUID or unique prefix (Delete only)"] = None,
include_tags: Annotated[bool, "Include tags (List/Search only)"] = True,
) -> str:
"""Manage lightweight local JSON “memories” (save | list | search | delete) in one MCP tool.
Overview:
This tool provides simple, local, append‑only style persistence for short text memories
with optional tags. Data is stored in a plaintext JSON file ("memories.json") beside the
application; no external database or network access is required.
Supported Actions:
- save : Store a new memory (requires 'text'; optional 'tags').
- list : Return the most recent memories (respects 'limit' + 'include_tags').
- search : Enhanced AND match with tag: queries, boolean operators, and text terms (uses 'query', 'limit').
- delete : Remove one memory by full UUID or unique prefix (uses 'memory_id').
Parameter Usage by Action:
action=save -> text (required), tags (optional)
action=list -> limit, include_tags
action=search -> query (required), limit, include_tags
action=delete -> memory_id (required)
Parameters:
action (Literal[save|list|search|delete]): Operation selector (case-insensitive).
text (str): Raw memory content; leading/trailing whitespace trimmed (save only).
tags (str): Optional comma-separated tags; stored verbatim (save only).
query (str): Enhanced search query supporting:
- tag:name - search for specific tag
- AND/OR operators (case-insensitive, default is AND)
- Regular text terms search in text content and tags
- Examples: 'tag:work', 'tag:work AND tag:project', 'meeting tag:work', 'tag:urgent OR important'
limit (int): Maximum rows for list/search (clamped internally to 1–200).
memory_id (str): Full UUID or unique prefix (>=4 chars) (delete only).
include_tags (bool): When True, show tag column in list/search output.
Storage Format (per entry):
{"id": "<uuid4>", "text": "<original text>", "timestamp": "YYYY-MM-DD HH:MM:SS", "tags": "tag1, tag2"}
Lifecycle & Constraints:
- A soft cap of {_MAX_MEMORIES} entries is enforced by pruning oldest records on save.
- A light duplicate guard skips saving if the newest existing entry has identical text.
- All operations are protected by a thread‑local reentrant lock (NOT multi‑process safe).
Returns:
str: Human‑readable status / result lines (never raw JSON) suitable for direct model consumption.
Error Modes:
- Invalid action -> error string.
- Missing required field for the chosen action -> explanatory message.
- Ambiguous or unknown memory_id on delete -> clarification message.
Security & Privacy:
Plaintext JSON; do not store secrets, credentials, or regulated personal data.
"""
act = (action or "").lower().strip()
# Normalize None -> "" for internal helpers
text = text or ""
tags = tags or ""
query = query or ""
memory_id = memory_id or ""
if act == "save":
if not text.strip():
return "Error: 'text' is required when action=save."
return _mem_save(text=text, tags=tags)
if act == "list":
return _mem_list(limit=limit, include_tags=include_tags)
if act == "search":
if not query.strip():
return "Error: 'query' is required when action=search."
return _mem_search(query=query, limit=limit)
if act == "delete":
if not memory_id.strip():
return "Error: 'memory_id' is required when action=delete."
return _mem_delete(memory_id=memory_id)
return "Error: invalid action (use save|list|search|delete)."
memory_interface = gr.Interface(
fn=Memory_Manager,
inputs=[
gr.Dropdown(label="Action", choices=["save","list","search","delete"], value="list"),
gr.Textbox(label="Text", lines=3, placeholder="Memory text (save)"),
gr.Textbox(label="Tags", placeholder="tag1, tag2"),
gr.Textbox(label="Query", placeholder="tag:work AND tag:project OR meeting"),
gr.Slider(1, 200, value=20, step=1, label="Limit"),
gr.Textbox(label="Memory ID / Prefix", placeholder="UUID or prefix (delete)"),
gr.Checkbox(value=True, label="Include Tags"),
],
outputs=gr.Textbox(label="Result", lines=14),
title="Memory Manager",
description=(
"<div style=\"text-align:center\">Lightweight local JSON memory store (no external DB). Choose an Action, fill only the relevant fields, and run.</div>"
),
api_description=(
"Manage short text memories with optional tags. Actions: save(text,tags), list(limit,include_tags), "
"search(query,limit,include_tags), delete(memory_id). Enhanced search supports tag:name queries and AND/OR operators. "
"Examples: 'tag:work', 'tag:work AND tag:project', 'meeting tag:work', 'tag:urgent OR important'. "
"Action parameter is always required. Use Memory_Manager whenever you are given information worth remembering about the user, "
"and search for memories when relevant."
),
flagging_mode="never",
)
# ==========================
# Image Generation (Serverless)
# ==========================
HF_API_TOKEN = os.getenv("HF_READ_TOKEN")
def Generate_Image( # <-- MCP tool #5 (Generate Image)
prompt: Annotated[str, "Text description of the image to generate."],
model_id: Annotated[str, "Hugging Face model id in the form 'creator/model-name' (e.g., black-forest-labs/FLUX.1-Krea-dev)."] = "black-forest-labs/FLUX.1-Krea-dev",
negative_prompt: Annotated[str, "What should NOT appear in the image." ] = (
"(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, "
"missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, "
"mutated, ugly, disgusting, blurry, amputation, misspellings, typos"
),
steps: Annotated[int, "Number of denoising steps (1–100). Higher = slower, potentially higher quality."] = 35,
cfg_scale: Annotated[float, "Classifier-free guidance scale (1–20). Higher = follow the prompt more closely."] = 7.0,
sampler: Annotated[str, "Sampling method label (UI only). Common options: 'DPM++ 2M Karras', 'DPM++ SDE Karras', 'Euler', 'Euler a', 'Heun', 'DDIM'."] = "DPM++ 2M Karras",
seed: Annotated[int, "Random seed for reproducibility. Use -1 for a random seed per call."] = -1,
width: Annotated[int, "Output width in pixels (64–1216, multiple of 32 recommended)."] = 1024,
height: Annotated[int, "Output height in pixels (64–1216, multiple of 32 recommended)."] = 1024,
) -> Image.Image:
"""
Generate a single image from a text prompt using a Hugging Face model via serverless inference.
Args:
prompt (str): Text description of the image to generate.
model_id (str): The Hugging Face model id (creator/model-name). Defaults to "black-forest-labs/FLUX.1-Krea-dev".
negative_prompt (str): What should NOT appear in the image.
steps (int): Number of denoising steps (1–100). Higher can improve quality.
cfg_scale (float): Guidance scale (1–20). Higher = follow the prompt more closely.
sampler (str): Sampling method label for UI; not all providers expose this control.
seed (int): Random seed. Use -1 to randomize on each call.
width (int): Output width in pixels (64–1216; multiples of 32 recommended).
height (int): Output height in pixels (64–1216; multiples of 32 recommended).
Returns:
PIL.Image.Image: The generated image.
Error modes:
- Raises gr.Error with a user-friendly message on auth/model/load errors.
"""
_log_call_start("Generate_Image", prompt=_truncate_for_log(prompt, 200), model_id=model_id, steps=steps, cfg_scale=cfg_scale, seed=seed, size=f"{width}x{height}")
if not prompt or not prompt.strip():
_log_call_end("Generate_Image", "error=empty prompt")
raise gr.Error("Please provide a non-empty prompt.")
# Slightly enhance prompt for quality (kept consistent with Serverless space)
enhanced_prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
# Try multiple providers for resilience
providers = ["auto", "replicate", "fal-ai"]
last_error: Exception | None = None
for provider in providers:
try:
client = InferenceClient(api_key=HF_API_TOKEN, provider=provider)
image = client.text_to_image(
prompt=enhanced_prompt,
negative_prompt=negative_prompt,
model=model_id,
width=width,
height=height,
num_inference_steps=steps,
guidance_scale=cfg_scale,
seed=seed if seed != -1 else random.randint(1, 1_000_000_000),
)
_log_call_end("Generate_Image", f"provider={provider} size={image.size}")
return image
except Exception as e: # try next provider, transform last one to friendly error
last_error = e
continue
# If we reach here, all providers failed
msg = str(last_error) if last_error else "Unknown error"
if "404" in msg:
raise gr.Error(f"Model not found or unavailable: {model_id}. Check the id and your HF token access.")
if "503" in msg:
raise gr.Error("The model is warming up. Please try again shortly.")
if "401" in msg or "403" in msg:
raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.")
# Map common provider auth messages to the same friendly guidance
low = msg.lower()
if ("api_key" in low) or ("hf auth login" in low) or ("unauthorized" in low) or ("forbidden" in low):
raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.")
_log_call_end("Generate_Image", f"error={_truncate_for_log(msg, 200)}")
raise gr.Error(f"Image generation failed: {msg}")
image_generation_interface = gr.Interface(
fn=Generate_Image,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter a prompt", lines=2),
gr.Textbox(label="Model", value="black-forest-labs/FLUX.1-Krea-dev", placeholder="creator/model-name"),
gr.Textbox(
label="Negative Prompt",
value=(
"(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, "
"missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, "
"mutated, ugly, disgusting, blurry, amputation, misspellings, typos"
),
lines=2,
),
gr.Slider(minimum=1, maximum=100, value=35, step=1, label="Steps"),
gr.Slider(minimum=1.0, maximum=20.0, value=7.0, step=0.1, label="CFG Scale"),
gr.Radio(label="Sampler", value="DPM++ 2M Karras", choices=[
"DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"
]),
gr.Slider(minimum=-1, maximum=1_000_000_000, value=-1, step=1, label="Seed (-1 = random)"),
gr.Slider(minimum=64, maximum=1216, value=1024, step=32, label="Width"),
gr.Slider(minimum=64, maximum=1216, value=1024, step=32, label="Height"),
],
outputs=gr.Image(label="Generated Image"),
title="Image Generation",
description=(
"<div style=\"text-align:center\">Generate images via Hugging Face serverless inference. "
"Default model is FLUX.1-Krea-dev.</div>"
),
api_description=(
"Generate a single image from a text prompt using a Hugging Face model via serverless inference. "
"Supports creative prompts like 'a serene mountain landscape at sunset', 'portrait of a wise owl', "
"'futuristic city with flying cars'. Default model: FLUX.1-Krea-dev. "
"Parameters: prompt (str), model_id (str, creator/model-name), negative_prompt (str), steps (int, 1–100), "
"cfg_scale (float, 1–20), sampler (str), seed (int, -1=random), width/height (int, 64–1216). "
"Returns a PIL.Image. Return the generated media to the user in this format ``"
),
flagging_mode="never",
# Only expose to MCP when HF token is provided; UI tab is always visible
show_api=bool(os.getenv("HF_READ_TOKEN")),
)
# ==========================
# Video Generation (Serverless)
# ==========================
def _write_video_tmp(data_iter_or_bytes: object, suffix: str = ".mp4") -> str:
"""Write video bytes or iterable of bytes to a system temporary file and return its path.
This avoids polluting the project directory. The file is created in the OS temp
location; Gradio will handle serving & offering the download button.
"""
fd, fname = tempfile.mkstemp(suffix=suffix)
try:
with os.fdopen(fd, "wb") as f:
if isinstance(data_iter_or_bytes, (bytes, bytearray)):
f.write(data_iter_or_bytes) # type: ignore[arg-type]
elif hasattr(data_iter_or_bytes, "read"):
f.write(data_iter_or_bytes.read()) # type: ignore[call-arg]
elif hasattr(data_iter_or_bytes, "content"):
f.write(data_iter_or_bytes.content) # type: ignore[attr-defined]
elif hasattr(data_iter_or_bytes, "__iter__") and not isinstance(data_iter_or_bytes, (str, dict)):
for chunk in data_iter_or_bytes: # type: ignore[assignment]
if chunk:
f.write(chunk)
else:
raise gr.Error("Unsupported video data type returned by provider.")
except Exception:
# Clean up if writing failed
try:
os.remove(fname)
except Exception:
pass
raise
return fname
HF_VIDEO_TOKEN = os.getenv("HF_READ_TOKEN") or os.getenv("HF_TOKEN")
def Generate_Video( # <-- MCP tool #6 (Generate Video)
prompt: Annotated[str, "Text description of the video to generate (e.g., 'a red fox running through a snowy forest at sunrise')."],
model_id: Annotated[str, "Hugging Face model id in the form 'creator/model-name'. Defaults to Wan-AI/Wan2.2-T2V-A14B."] = "Wan-AI/Wan2.2-T2V-A14B",
negative_prompt: Annotated[str, "What should NOT appear in the video."] = "",
steps: Annotated[int, "Number of denoising steps (1–100). Higher can improve quality but is slower."] = 25,
cfg_scale: Annotated[float, "Guidance scale (1–20). Higher = follow the prompt more closely, lower = more creative."] = 3.5,
seed: Annotated[int, "Random seed for reproducibility. Use -1 for a random seed per call."] = -1,
width: Annotated[int, "Output width in pixels (multiples of 8 recommended)."] = 768,
height: Annotated[int, "Output height in pixels (multiples of 8 recommended)."] = 768,
fps: Annotated[int, "Frames per second of the output video (e.g., 24)."] = 24,
duration: Annotated[float, "Target duration in seconds (provider/model dependent, commonly 2–6s)."] = 4.0,
) -> str:
"""
Generate a short video from a text prompt using a Hugging Face model via serverless inference.
Args:
prompt (str): Text description of the video to generate.
model_id (str): The Hugging Face model id (creator/model-name). Defaults to "Wan-AI/Wan2.2-T2V-A14B".
negative_prompt (str): What should NOT appear in the video.
steps (int): Number of denoising steps (1–100). Higher can improve quality but is slower.
cfg_scale (float): Guidance scale (1–20). Higher = follow the prompt more closely.
seed (int): Random seed. Use -1 to randomize on each call.
width (int): Output width in pixels.
height (int): Output height in pixels.
fps (int): Frames per second.
duration (float): Target duration in seconds.
Returns:
str: Path to an MP4 file on disk (Gradio will serve this file; MCP converts it to a file URL).
Error modes:
- Raises gr.Error with a user-friendly message on auth/model/load errors or unsupported parameters.
"""
_log_call_start("Generate_Video", prompt=_truncate_for_log(prompt, 160), model_id=model_id, steps=steps, cfg_scale=cfg_scale, fps=fps, duration=duration, size=f"{width}x{height}")
if not prompt or not prompt.strip():
_log_call_end("Generate_Video", "error=empty prompt")
raise gr.Error("Please provide a non-empty prompt.")
if not HF_VIDEO_TOKEN:
# Still attempt without a token (public models), but warn earlier if it fails.
pass
providers = ["auto", "replicate", "fal-ai"]
last_error: Exception | None = None
# Build a common parameters dict. Providers may ignore unsupported keys.
parameters = {
"negative_prompt": negative_prompt or None,
"num_inference_steps": steps,
"guidance_scale": cfg_scale,
"seed": seed if seed != -1 else random.randint(1, 1_000_000_000),
"width": width,
"height": height,
"fps": fps,
# Some providers/models expect num_frames instead of duration; we pass both-friendly value
# when supported; they may be ignored by the backend.
"duration": duration,
}
for provider in providers:
try:
client = InferenceClient(api_key=HF_VIDEO_TOKEN, provider=provider)
# Use the documented text_to_video API with correct parameters
if hasattr(client, "text_to_video"):
# Calculate num_frames from duration and fps if both provided
num_frames = int(duration * fps) if duration and fps else None
# Build extra_body for provider-specific parameters
extra_body = {}
if width:
extra_body["width"] = width
if height:
extra_body["height"] = height
if fps:
extra_body["fps"] = fps
if duration:
extra_body["duration"] = duration
result = client.text_to_video(
prompt=prompt,
model=model_id,
guidance_scale=cfg_scale,
negative_prompt=[negative_prompt] if negative_prompt else None,
num_frames=num_frames,
num_inference_steps=steps,
seed=parameters["seed"],
extra_body=extra_body if extra_body else None,
)
else:
# Generic POST fallback for older versions
result = client.post(
model=model_id,
json={
"inputs": prompt,
"parameters": {k: v for k, v in parameters.items() if v is not None},
},
)
# Save output to an .mp4
path = _write_video_tmp(result, suffix=".mp4")
try:
size = os.path.getsize(path)
except Exception:
size = -1
_log_call_end("Generate_Video", f"provider={provider} path={os.path.basename(path)} bytes={size}")
return path
except Exception as e:
last_error = e
continue
msg = str(last_error) if last_error else "Unknown error"
if "404" in msg:
raise gr.Error(f"Model not found or unavailable: {model_id}. Check the id and HF token access.")
if "503" in msg:
raise gr.Error("The model is warming up. Please try again shortly.")
if "401" in msg or "403" in msg:
raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.")
# Map common provider auth messages to the same friendly guidance
low = msg.lower()
if ("api_key" in low) or ("hf auth login" in low) or ("unauthorized" in low) or ("forbidden" in low):
raise gr.Error("Please duplicate the space and provide a `HF_READ_TOKEN` to enable Image and Video Generation.")
_log_call_end("Generate_Video", f"error={_truncate_for_log(msg, 200)}")
raise gr.Error(f"Video generation failed: {msg}")
video_generation_interface = gr.Interface(
fn=Generate_Video,
inputs=[
gr.Textbox(label="Prompt", placeholder="Enter a prompt for the video", lines=2),
gr.Textbox(label="Model", value="Wan-AI/Wan2.2-T2V-A14B", placeholder="creator/model-name"),
gr.Textbox(label="Negative Prompt", value="", lines=2),
gr.Slider(minimum=1, maximum=100, value=25, step=1, label="Steps"),
gr.Slider(minimum=1.0, maximum=20.0, value=3.5, step=0.1, label="CFG Scale"),
gr.Slider(minimum=-1, maximum=1_000_000_000, value=-1, step=1, label="Seed (-1 = random)"),
gr.Slider(minimum=64, maximum=1920, value=768, step=8, label="Width"),
gr.Slider(minimum=64, maximum=1920, value=768, step=8, label="Height"),
gr.Slider(minimum=4, maximum=60, value=24, step=1, label="FPS"),
gr.Slider(minimum=1.0, maximum=10.0, value=4.0, step=0.5, label="Duration (s)"),
],
outputs=gr.Video(label="Generated Video", show_download_button=True, format="mp4"),
title="Video Generation",
description=(
"<div style=\"text-align:center\">Generate short videos via Hugging Face serverless inference. "
"Default model is Wan2.2-T2V-A14B.</div>"
),
api_description=(
"Generate a short video from a text prompt using a Hugging Face model via serverless inference. "
"Create dynamic scenes like 'a red fox running through a snowy forest at sunrise', 'waves crashing on a rocky shore', "
"'time-lapse of clouds moving across a blue sky'. Default model: Wan2.2-T2V-A14B (2-6 second videos). "
"Parameters: prompt (str), model_id (str), negative_prompt (str), steps (int), cfg_scale (float), seed (int), "
"width/height (int), fps (int), duration (float in seconds). Returns MP4 file path. "
"Return the generated media to the user in this format ``"
),
flagging_mode="never",
# Only expose to MCP when HF token is provided; UI tab is always visible
show_api=bool(os.getenv("HF_READ_TOKEN") or os.getenv("HF_TOKEN")),
)
# ==========================
# Deep Research (Search + Fetch + LLM)
# ==========================
HF_TEXTGEN_TOKEN = os.getenv("HF_READ_TOKEN") or os.getenv("HF_TOKEN")
def _normalize_query(q: str) -> str:
"""Normalize fancy quotes and stray punctuation in queries.
- Replace curly quotes with straight quotes
- Collapse multiple quotes/spaces
- Strip leading/trailing quotes
"""
if not q:
return ""
repl = {
"“": '"',
"”": '"',
"‘": "'",
"’": "'",
"`": "'",
}
for k, v in repl.items():
q = q.replace(k, v)
# Remove duplicated quotes and excessive spaces
q = re.sub(r'\s+', ' ', q)
q = re.sub(r'"\s+"', ' ', q)
q = q.strip().strip('"').strip()
return q
def _search_urls_only(query: str, max_results: int) -> list[str]:
"""Return a list of result URLs using DuckDuckGo search with rate limiting.
Uses ddgs to fetch web results only (no news/images/videos). Falls back to empty list on error.
"""
if not query or not query.strip() or max_results <= 0:
return []
urls: list[str] = []
try:
_search_rate_limiter.acquire()
with DDGS() as ddgs:
for item in ddgs.text(query, region="wt-wt", safesearch="moderate", max_results=max_results):
url = (item.get("href") or item.get("url") or "").strip()
if url:
urls.append(url)
except Exception:
pass
# De-duplicate while preserving order
seen = set()
deduped = []
for u in urls:
if u not in seen:
seen.add(u)
deduped.append(u)
return deduped
def _fetch_page_markdown(url: str, max_chars: int = 3000) -> str:
"""Fetch a single URL and return cleaned Markdown using existing Fetch_Webpage.
Returns empty string on error.
"""
try:
# Intentionally skip global fetch rate limiting for Deep Research speed.
return Fetch_Webpage(url=url, max_chars=max_chars, strip_selectors="", url_scraper=False, offset=0) # type: ignore[misc]
except Exception:
return ""
def _truncate_join(parts: list[str], max_chars: int) -> tuple[str, bool]:
out = []
total = 0
truncated = False
for p in parts:
if not p:
continue
if total + len(p) > max_chars:
out.append(p[: max(0, max_chars - total)])
truncated = True
break
out.append(p)
total += len(p)
return ("\n\n".join(out), truncated)
def _build_research_prompt(
summary: str,
queries: list[str],
url_list: list[str],
pages_map: dict[str, str],
) -> str:
researcher_instructions = (
"You are Nymbot, a helpful deep research assistant. You will be asked a Query from a user and you will create a long, comprehensive, well-structured research report in response to the user's Query.\n\n"
"You have been provided with User Question, Search Queries, and numerous webpages that the searches yielded.\n\n"
"<report_format>\n"
"Write a well-formatted report in the structure of a scientific report to a broad audience. The report must be readable and have a nice flow of Markdown headers and paragraphs of text. Do NOT use bullet points or lists which break up the natural flow. The report must be exhaustive for comprehensive topics.\n"
"For any given user query, first determine the major themes or areas that need investigation, then structure these as main sections, and develop detailed subsections that explore various facets of each theme. Each section and subsection requires paragraphs of texts that need to all connect into one narrative flow.\n"
"</report_format>\n\n"
"<document_structure>\n"
"- Always begin with a clear title using a single # header\n"
"- Organize content into major sections using ## headers\n"
"- Further divide into subsections using ### headers\n"
"- Use #### headers sparingly for special subsections\n"
"- Never skip header levels\n"
"- Write multiple paragraphs per section or subsection\n"
"- Each paragraph must contain at least 4-5 sentences, present novel insights and analysis grounded in source material, connect ideas to original query, and build upon previous paragraphs to create a narrative flow\n"
"- Never use lists, instead always use text or tables\n\n"
"Mandatory Section Flow:\n"
"1. Title (# level)\n - Before writing the main report, start with one detailed paragraph summarizing key findings\n"
"2. Main Body Sections (## level)\n - Each major topic gets its own section (## level). There MUST BE at least 5 sections.\n - Use ### subsections for detailed analysis\n - Every section or subsection needs at least one paragraph of narrative before moving to the next section\n - Do NOT have a section titled \"Main Body Sections\" and instead pick informative section names that convey the theme of the section\n"
"3. Conclusion (## level)\n - Synthesis of findings\n - Potential recommendations or next steps\n"
"</document_structure>\n\n"
"<planning_rules>\n"
"- Always break it down into multiple steps\n"
"- Assess the different sources and whether they are useful for any steps needed to answer the query\n"
"- Create the best report that weighs all the evidence from the sources\n"
"- Remember that the current date is: Wednesday, April 23, 2025, 11:50 AM EDT\n"
"- Make sure that your final report addresses all parts of the query\n"
"- Communicate a brief high-level plan in the introduction; do not reveal chain-of-thought.\n"
"- When referencing sources during analysis, you should still refer to them by index with brackets and follow <citations>\n"
"- As a final step, review your planned report structure and ensure it completely answers the query.\n"
"</planning_rules>\n\n"
)
# Build sources block limited to a reasonable size to avoid overrun
# Cap combined sources to ~180k characters
sources_blocks: list[str] = []
indexed_urls: list[str] = []
for idx, u in enumerate(url_list, start=1):
txt = pages_map.get(u, "").strip()
if not txt:
continue
indexed_urls.append(f"[{idx}] {u}")
# Prefix each source with its index and URL for citation
sources_blocks.append(f"[Source {idx}] URL: {u}\n\n{txt}")
# Cap combined sources aggressively to stay within provider limits
sources_joined, truncated = _truncate_join(sources_blocks, max_chars=100_000)
prompt = []
prompt.append(researcher_instructions)
prompt.append("<user_query_summary>\n" + (summary or "") + "\n</user_query_summary>\n")
# Include populated queries only
populated = [q for q in queries if q and q.strip()]
if populated:
prompt.append("<search_queries>\n" + "\n".join(f"- {q.strip()}" for q in populated) + "\n</search_queries>\n")
if indexed_urls:
prompt.append("<sources_list>\n" + "\n".join(indexed_urls) + "\n</sources_list>\n")
prompt.append("<fetched_documents>\n" + sources_joined + ("\n\n[NOTE] Sources truncated due to context limits." if truncated else "") + "\n</fetched_documents>")
return "\n\n".join(prompt)
def _write_report_tmp(text: str) -> str:
# Create a unique temp directory and write a deterministic filename inside it.
tmp_dir = tempfile.mkdtemp(prefix="deep_research_")
path = os.path.join(tmp_dir, "research_report.txt")
with open(path, "w", encoding="utf-8") as f:
f.write(text)
return path
def Deep_Research(
summary: Annotated[str, "Summarization of research topic (one or more sentences)."],
query1: Annotated[str, "DDG Search Query 1"],
max1: Annotated[int, "Max results for Query 1 (1-50)"] = 10,
query2: Annotated[str, "DDG Search Query 2"] = "",
max2: Annotated[int, "Max results for Query 2 (1-50)"] = 10,
query3: Annotated[str, "DDG Search Query 3"] = "",
max3: Annotated[int, "Max results for Query 3 (1-50)"] = 10,
query4: Annotated[str, "DDG Search Query 4"] = "",
max4: Annotated[int, "Max results for Query 4 (1-50)"] = 10,
query5: Annotated[str, "DDG Search Query 5"] = "",
max5: Annotated[int, "Max results for Query 5 (1-50)"] = 10,
) -> tuple[str, str, str]:
"""
Run deep research by searching, fetching pages, and generating a comprehensive report via a large LLM provider.
Pipeline:
1) Perform up to 5 DuckDuckGo searches (URLs only). If total requested > 50, each query is limited to 10.
2) Fetch all discovered URLs (up to 50) as cleaned Markdown (max 3000 chars per page).
3) Call Hugging Face Inference Providers (Cerebras) with model `Qwen/Qwen3-235B-A22B-Instruct-2507` to write a research report.
Args:
summary (str): A brief description of the overall research topic or user question.
This is shown to the researcher model and used to frame the report.
query1 (str): DuckDuckGo search query #1. Required if you want any results.
Example: "site:nature.com CRISPR ethical implications".
max1 (int): Maximum number of URLs to take from query #1 (1–50).
If the combined total requested across all queries exceeds 50, each query will be capped to 10.
query2 (str): DuckDuckGo search query #2. Optional; leave empty to skip.
max2 (int): Maximum number of URLs to take from query #2 (1–50).
query3 (str): DuckDuckGo search query #3. Optional; leave empty to skip.
max3 (int): Maximum number of URLs to take from query #3 (1–50).
query4 (str): DuckDuckGo search query #4. Optional; leave empty to skip.
max4 (int): Maximum number of URLs to take from query #4 (1–50).
query5 (str): DuckDuckGo search query #5. Optional; leave empty to skip.
max5 (int): Maximum number of URLs to take from query #5 (1–50).
Returns:
- Markdown research report
- Newline-separated list of fetched URLs
- Path to a downloadable .txt file containing the full report
Raises:
gr.Error: If a required Hugging Face token is not provided or if the researcher
model call fails after retries.
Notes:
- Total URLs across queries are capped at 50.
- Each fetched page is truncated to ~3000 characters before prompting the model.
- The function is optimized to complete within typical MCP time budgets.
"""
_log_call_start(
"Deep_Research",
summary=_truncate_for_log(summary or "", 200),
queries=[q for q in [query1, query2, query3, query4, query5] if q],
)
# Validate token
if not HF_TEXTGEN_TOKEN:
_log_call_end("Deep_Research", "error=missing HF token")
raise gr.Error("Please provide a `HF_READ_TOKEN` to enable Deep Research.")
# Normalize caps per spec and sanitize queries
queries = [
_normalize_query(query1 or ""),
_normalize_query(query2 or ""),
_normalize_query(query3 or ""),
_normalize_query(query4 or ""),
_normalize_query(query5 or ""),
]
reqs = [max(1, min(50, int(max1))), max(1, min(50, int(max2))), max(1, min(50, int(max3))), max(1, min(50, int(max4))), max(1, min(50, int(max5)))]
total_requested = sum(reqs)
if total_requested > 50:
# Enforce rule: each query fetches 10 results when over 50 total requested
reqs = [10, 10, 10, 10, 10]
# Overall deadline to avoid MCP 60s timeout (reserve ~5s for prompt+inference)
start_ts = time.time()
budget_seconds = 55.0
deadline = start_ts + budget_seconds
def time_left() -> float:
return max(0.0, deadline - time.time())
# 1) Run searches (parallelize queries to reduce latency) and stop if budget exceeded
all_urls: list[str] = []
from concurrent.futures import ThreadPoolExecutor, as_completed
tasks = []
with ThreadPoolExecutor(max_workers=min(5, sum(1 for q in queries if q.strip())) or 1) as executor:
for q, n in zip(queries, reqs):
if not q.strip():
continue
tasks.append(executor.submit(_search_urls_only, q.strip(), n))
for fut in as_completed(tasks):
try:
urls = fut.result() or []
except Exception:
urls = []
for u in urls:
if u not in all_urls:
all_urls.append(u)
if len(all_urls) >= 50:
break
if time_left() <= 0.5:
# Out of budget for searching; stop early
break
# Don't block on leftover tasks; cancel/shutdown immediately
# Python futures don't support true cancel if running, but we can just avoid waiting
# and let executor context exit cleanly.
if len(all_urls) > 50:
all_urls = all_urls[:50]
# Filter obviously irrelevant/shopping/dictionary/forum domains that often appear due to phrase tokenization
blacklist = {
"homedepot.com",
"tractorsupply.com",
"mcmaster.com",
"mrchain.com",
"answers.com",
"city-data.com",
"dictionary.cambridge.org",
}
def _domain(u: str) -> str:
try:
return urlparse(u).netloc.lower()
except Exception:
return ""
all_urls = [u for u in all_urls if _domain(u) not in blacklist]
# Skip known large/non-HTML file types to avoid wasted fetch time
skip_exts = (
".pdf", ".ppt", ".pptx", ".doc", ".docx", ".xls", ".xlsx",
".zip", ".gz", ".tgz", ".bz2", ".7z", ".rar"
)
def _skip_url(u: str) -> bool:
try:
path = urlparse(u).path.lower()
except Exception:
return False
return any(path.endswith(ext) for ext in skip_exts)
all_urls = [u for u in all_urls if not _skip_url(u)]
# 2) Fetch pages (markdown, 3000 chars) with slow-host requeue (3s delay), respecting deadline
pages: dict[str, str] = {}
if all_urls:
from concurrent.futures import ThreadPoolExecutor, Future
from collections import deque
queue = deque(all_urls)
attempts: dict[str, int] = {u: 0 for u in all_urls}
max_attempts = 2 # fewer retries to honor budget
max_workers = min(12, max(4, len(all_urls)))
in_flight: dict[Future, str] = {}
def schedule_next(executor: ThreadPoolExecutor) -> None:
while queue and len(in_flight) < max_workers:
u = queue.popleft()
# Skip if already fetched or exceeded attempts
if u in pages:
continue
if attempts[u] >= max_attempts:
continue
attempts[u] += 1
# Adaptive per-attempt timeout based on time remaining; min 2s, max 10s
tl = time_left()
per_timeout = 10.0 if tl > 15 else (5.0 if tl > 8 else 2.0)
fut = executor.submit(_fetch_page_markdown_fast, u, 3000, per_timeout)
in_flight[fut] = u
delayed: list[tuple[float, str]] = [] # (ready_time, url)
with ThreadPoolExecutor(max_workers=max_workers) as executor:
schedule_next(executor)
while (in_flight or queue) and time_left() > 0.2:
# Move any delayed items whose time has arrived back into the queue
now = time.time()
if delayed:
ready, not_ready = [], []
for t, u in delayed:
(ready if t <= now else not_ready).append((t, u))
delayed = not_ready
for _, u in ready:
queue.append(u)
# Try to schedule newly ready URLs
if ready:
schedule_next(executor)
done: list[Future] = []
# Poll completed futures without blocking too long
for fut in list(in_flight.keys()):
if fut.done():
done.append(fut)
if not done:
# If nothing to do but we have delayed items pending, sleep until next due time (capped)
if not queue and delayed:
sleep_for = max(0.02, min(0.25, max(0.0, min(t for t, _ in delayed) - time.time())))
time.sleep(sleep_for)
else:
# brief sleep to avoid busy spin
time.sleep(0.05)
else:
for fut in done:
u = in_flight.pop(fut)
try:
md = fut.result()
if md and not md.startswith("Unsupported content type") and not md.startswith("An error occurred"):
pages[u] = md
try:
print(f"[FETCH OK] {u} (chars={len(md)})", flush=True)
except Exception:
pass
else:
# If empty due to non-timeout error, don't retry further
pass
except SlowHost:
# Requeue to the back after 3 seconds
# But only if we have enough time left for a retry window
if time_left() > 5.0:
delayed.append((time.time() + 3.0, u))
except Exception:
# Non-timeout error; skip
pass
# After handling done items, try to schedule more
schedule_next(executor)
# If budget is nearly up and no pages were fetched, fall back to using the unique URL list in prompt (no content)
# The prompt builder will include sources list even if pages_map is empty; LLM can still reason over URLs indirectly.
# Build final prompt
prompt = _build_research_prompt(summary=summary or "", queries=[q for q in queries if q.strip()], url_list=list(pages.keys()), pages_map=pages)
# 3) Call the Researcher model via Cerebras provider with robust fallbacks
messages = [
{"role": "system", "content": "You are Nymbot, an expert deep research assistant."},
{"role": "user", "content": prompt},
]
try:
prompt_chars = len(prompt)
except Exception:
prompt_chars = -1
print(f"[PIPELINE] Fetch complete: pages={len(pages)}, unique_urls={len(pages.keys())}, prompt_chars={prompt_chars}", flush=True)
print("[PIPELINE] Starting inference (provider=cerebras, model=Qwen/Qwen3-235B-A22B-Thinking-2507)", flush=True)
def _run_inference(provider: str, max_tokens: int, temp: float, top_p: float):
client = InferenceClient(provider=provider, api_key=HF_TEXTGEN_TOKEN)
return client.chat.completions.create(
model="Qwen/Qwen3-235B-A22B-Thinking-2507",
messages=messages,
max_tokens=max_tokens,
temperature=temp,
top_p=top_p,
)
try:
# Attempt 1: Cerebras, full prompt
print("[LLM] Attempt 1: provider=cerebras, max_tokens=32768", flush=True)
completion = _run_inference("cerebras", max_tokens=32768, temp=0.3, top_p=0.95)
except Exception as e1:
print(f"[LLM] Attempt 1 failed: {str(e1)[:200]}", flush=True)
# Attempt 2: Cerebras, trimmed prompt and lower max_tokens
try:
prompt2 = _build_research_prompt(summary=summary or "", queries=[q for q in queries if q.strip()], url_list=list(pages.keys())[:30], pages_map={k: pages[k] for k in list(pages.keys())[:30]})
messages = [
{"role": "system", "content": "You are Nymbot, an expert deep research assistant."},
{"role": "user", "content": prompt2},
]
print("[LLM] Attempt 2: provider=cerebras (trimmed), max_tokens=16384", flush=True)
completion = _run_inference("cerebras", max_tokens=16384, temp=0.7, top_p=0.95)
except Exception as e2:
print(f"[LLM] Attempt 2 failed: {str(e2)[:200]}", flush=True)
# Attempt 3: provider auto-fallback with trimmed prompt
try:
print("[LLM] Attempt 3: provider=auto, max_tokens=8192", flush=True)
completion = _run_inference("auto", max_tokens=8192, temp=0.7, top_p=0.95)
except Exception as e3:
_log_call_end("Deep_Research", f"error={_truncate_for_log(str(e3), 260)}")
raise gr.Error(f"Researcher model call failed: {e3}")
raw = completion.choices[0].message.content or ""
# 1) Strip any internal <think>...</think> blocks produced by the Thinking model
try:
no_think = re.sub(r"<think>[\s\S]*?<\\/think>", "", raw, flags=re.IGNORECASE)
no_think = re.sub(r"<\\/?think>", "", no_think, flags=re.IGNORECASE)
except Exception:
no_think = raw
# 2) Remove planning / meta-analysis paragraphs that are part of the model's visible thinking trace.
# Heuristics: paragraphs (double-newline separated) containing phrases like "let me", "first,", "now i'll",
# "i will", "i'll", "let's", "now let me", or starting with "first" (case-insensitive).
try:
paragraphs = [p for p in re.split(r"\n\s*\n", no_think) if p.strip()]
keep: list[str] = []
removed = 0
planning_re = re.compile(r"\b(let me|now i(?:'ll| will)?|first,|i will now|i will|i'll|let's|now let me|i need to|i will now|now i'll|now i will)\b", re.IGNORECASE)
for p in paragraphs:
# If the paragraph looks like explicit planning/analysis, drop it
if planning_re.search(p):
removed += 1
continue
keep.append(p)
report = "\n\n".join(keep).strip()
# If we removed everything, fall back to the no_think version
if not report:
report = no_think.strip()
except Exception:
report = no_think
# 3) Final whitespace normalization
report = re.sub(r"\n\s*\n\s*\n+", "\n\n", report)
# Emit a short postprocess log
try:
print(f"[POSTPROCESS] removed_planning_paragraphs={removed}, raw_chars={len(raw)}, final_chars={len(report)}", flush=True)
except Exception:
pass
# Build outputs
links_text = "\n".join([f"[{i+1}] {u}" for i, u in enumerate(pages.keys())])
file_path = _write_report_tmp(report)
elapsed = time.time() - start_ts
# Print explicit timing and include in structured log output
print(f"[TIMING] Deep_Research elapsed: {elapsed:.2f}s", flush=True)
_log_call_end("Deep_Research", f"urls={len(pages)} file={os.path.basename(file_path)} duration={elapsed:.2f}s")
return report, links_text, file_path
deep_research_interface = gr.Interface(
fn=Deep_Research,
inputs=[
gr.Textbox(label="Summarization of research topic", lines=3, placeholder="Briefly summarize the research topic or user question"),
gr.Textbox(label="DDG Search Query 1"),
gr.Slider(1, 50, value=10, step=1, label="Max results (Q1)"),
gr.Textbox(label="DDG Search Query 2", value=""),
gr.Slider(1, 50, value=10, step=1, label="Max results (Q2)"),
gr.Textbox(label="DDG Search Query 3", value=""),
gr.Slider(1, 50, value=10, step=1, label="Max results (Q3)"),
gr.Textbox(label="DDG Search Query 4", value=""),
gr.Slider(1, 50, value=10, step=1, label="Max results (Q4)"),
gr.Textbox(label="DDG Search Query 5", value=""),
gr.Slider(1, 50, value=10, step=1, label="Max results (Q5)"),
],
outputs=[
gr.Markdown(label="Research Report"),
gr.Textbox(label="Fetched Links", lines=8),
gr.File(label="Download Research Report", file_count="single"),
],
title="Deep Research",
description=(
"<div style=\"text-align:center\">Perform multi-query web research: search with DuckDuckGo, fetch up to 50 pages in parallel, "
"and generate a comprehensive report using a large LLM via Hugging Face Inference Providers (Cerebras). Requires HF_READ_TOKEN.</div>"
),
api_description=(
"Runs 1–5 DDG searches (URLs only), caps total results to 50 (when exceeding, each query returns 10). "
"Fetches all URLs (3000 chars each) and calls the Researcher to write a research report. "
"Returns the report (Markdown), the list of sources, and a downloadable text file path. "
"Provide the user with one-paragraph summary of the research report and the txt file in this format ``"
),
flagging_mode="never",
show_api=bool(HF_TEXTGEN_TOKEN),
)
_interfaces = [
fetch_interface,
concise_interface,
code_interface,
memory_interface, # Always visible in UI
kokoro_interface,
image_generation_interface, # Always visible in UI
video_generation_interface, # Always visible in UI
deep_research_interface,
]
_tab_names = [
"Fetch Webpage",
"DuckDuckGo Search",
"Python Code Executor",
"Memory Manager",
"Kokoro TTS",
"Image Generation",
"Video Generation",
"Deep Research",
]
with gr.Blocks(title="Nymbo/Tools MCP", theme="Nymbo/Nymbo_Theme", css=CSS_STYLES) as demo:
# Page title (scoped styling via .app-title to avoid affecting other headings)
gr.HTML("<h1 class='app-title'>Nymbo/Tools MCP</h1>")
# Collapsed Information accordion (appears below subtitle and above tabs)
with gr.Accordion("Information", open=False):
gr.HTML(
"""
<div class="info-accordion">
<div class="info-grid">
<section class="info-card">
<div class="info-card__icon">🔐</div>
<div class="info-card__body">
<h3>Enable Image & Video Generation</h3>
<p>
The <code>Generate_Image</code> and <code>Generate_Video</code> tools require a
<code>HF_READ_TOKEN</code> set as a secret or environment variable.
</p>
<ul class="info-list">
<li>Duplicate this Space and add a HF token with model read access.</li>
<li>Or run locally with <code>HF_READ_TOKEN</code> in your environment.</li>
</ul>
<div class="info-hint">
These tools are hidden as MCP tools without authentication to keep tool lists tidy, but remain visible in the UI.
</div>
</div>
</section>
<section class="info-card">
<div class="info-card__icon">🧠</div>
<div class="info-card__body">
<h3>Persistent Memories</h3>
<p>
In this public demo, memories are stored in the Space's running container and are cleared when the Space restarts.
Content is visible to everyone—avoid personal data.
</p>
<p>
When running locally, memories are saved to <code>memories.json</code> at the repo root for privacy.
</p>
</div>
</section>
<section class="info-card">
<div class="info-card__icon">🔗</div>
<div class="info-card__body">
<h3>Connecting from an MCP Client</h3>
<p>
This Space also runs as a Model Context Protocol (MCP) server. Point your client to:
<br/>
<code>https://mcp.nymbo.net/gradio_api/mcp/</code>
</p>
<p>Example client configuration:</p>
<pre><code class="language-json">{
"mcpServers": {
"nymbo-tools": {
"url": "https://mcp.nymbo.net/gradio_api/mcp/"
}
}
}</code></pre>
</div>
</section>
<section class="info-card">
<div class="info-card__icon">🛠️</div>
<div class="info-card__body">
<h3>Tool Notes & Kokoro Voice Legend</h3>
<p>
No authentication required for: <code>Fetch_Webpage</code>, <code>Search_DuckDuckGo</code>,
<code>Execute_Python</code>, and <code>Generate_Speech</code>.
</p>
<p><strong>Kokoro TTS voice prefixes</strong></p>
<ul class="info-list" style="display:grid;grid-template-columns:repeat(2,minmax(160px,1fr));gap:6px 16px;">
<li><code>af</code> — American female</li>
<li><code>am</code> — American male</li>
<li><code>bf</code> — British female</li>
<li><code>bm</code> — British male</li>
<li><code>ef</code> — European female</li>
<li><code>em</code> — European male</li>
<li><code>hf</code> — Hindi female</li>
<li><code>hm</code> — Hindi male</li>
<li><code>if</code> — Italian female</li>
<li><code>im</code> — Italian male</li>
<li><code>jf</code> — Japanese female</li>
<li><code>jm</code> — Japanese male</li>
<li><code>pf</code> — Portuguese female</li>
<li><code>pm</code> — Portuguese male</li>
<li><code>zf</code> — Chinese female</li>
<li><code>zm</code> — Chinese male</li>
<li><code>ff</code> — French female</li>
</ul>
</div>
</section>
</div>
</div>
"""
)
# Existing tool tabs
gr.TabbedInterface(interface_list=_interfaces, tab_names=_tab_names)
# Launch the UI and expose all functions as MCP tools in one server
if __name__ == "__main__":
demo.launch(mcp_server=True) |