File size: 10,206 Bytes
ce09408
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228

from art import *
import time

print(text2art('''TensorLM''', font="small"))
print("Our license: https://www.apache.org/licenses/LICENSE-2.0.txt")


time.sleep(5)

print(" ")

import os
import gradio as gr
import copy
import llama_cpp
from llama_cpp import Llama
import random
from huggingface_hub import hf_hub_download  

#from blip.blip_engine import blip_run



dir = os.getcwd()

def load_model(path, n_ctx, n_gpu_layers, n_threads, verbose, f16_kv, logits_all, vocab_only, use_mmap, use_mlock, n_batch, last_n_tokens_size, low_vram, rope_freq_base, rope_freq_scale):
    try:
        global llm
        llm = Llama(
            model_path=f"{dir}\models\{path}",
            n_ctx=n_ctx,
            n_gpu_layers=n_gpu_layers,
            n_threads=n_threads,
            verbose=verbose,
            f16_kv=f16_kv,
            logits_all=logits_all,
            vocab_only=vocab_only,
            use_mmap=use_mmap,
            use_mlock=use_mlock,
            n_batch=n_batch,
            last_n_tokens_size=last_n_tokens_size,
            low_vram=low_vram,
            rope_freq_base=rope_freq_base,
            rope_freq_scale=rope_freq_scale,



        )
        return path 
    except:
        return ""

def list_models(name):
    return os.listdir(f"{dir}\models")

def render_md(text):
    return f"{text}"

def download_model(repo_id, filename):
    hf_hub_download(
        repo_id=repo_id,
        filename=filename,
        local_dir="models",
        force_download=True, resume_download=False,
        cache_dir=".cache",
    )
    return f"Downloaded!"

history = []

'''
system_message = """
You are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.
If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.
"""
'''


def generate_text(message, history, system_prompt, preset, temperature, max_tokens, top_p, top_k, repeat_penalty):
    temp = ""
    input_prompt = f"[INST] <<SYS>>\nYou are {preset}. {system_prompt}.\n<</SYS>>\n\n "
    for interaction in history:
        input_prompt = input_prompt + str(interaction[0]) + " [/INST] " + str(interaction[1]) + " </s><s> [INST] "

    input_prompt = input_prompt + str(message) + " [/INST] "

    output = llm(
        input_prompt,
        temperature=temperature,
        top_p=top_p,
        top_k=top_k, 
        repeat_penalty=repeat_penalty,
        max_tokens=max_tokens,
        stop=[
            "<|prompter|>",
            "<|endoftext|>",
            "<|endoftext|> \n",
            "ASSISTANT:",
            "USER:",
            "SYSTEM:",
        ],
        stream=True,
    )
    for out in output:
        stream = copy.deepcopy(out)
        temp += stream["choices"][0]["text"]
        yield temp

    history = ["init", input_prompt]


    
chatbot = gr.Chatbot(show_label=False, layout="panel", show_copy_button=True, height=500, min_width=180)

with gr.Blocks(theme="theme-repo/STONE_Theme", title="TensorLM", css="style.css") as demo:
    with gr.Row():
        model = gr.Dropdown(label="Model (only based on Llama in GGML format (.bin))", choices=os.listdir(f"{dir}\models"), value="None", interactive=True, allow_custom_value=False, scale=50)
        #refresh_model = gr.Button(value="Load model", interactive=True, scale=1)
    with gr.Row():
        with gr.Tab("πŸ’¬"):
            with gr.Row(visible=False, render=False) as sliders:
        
                with gr.Tab("Parameters"):
                    max_tokens = gr.Slider(label="Max new tokens", minimum=256, maximum=4056, value=512, step=8, interactive=True)
                    temperature = gr.Slider(label="Temperature", minimum=0.01, maximum=2.00, value=0.15, step=0.01, interactive=True)
                    top_p = gr.Slider(label="Top P", minimum=0.01, maximum=2.00, value=0.10, step=0.01, interactive=True)
                    top_k = gr.Slider(label="Top K", minimum=10.00, maximum=100.00, value=40.00, step=0.01, interactive=True)
                    repeat_penalty = gr.Slider(label="Repeat penalty", minimum=0.01, maximum=2.00, value=1.10, step=0.01, interactive=True)
                with gr.Tab("Instructions"):
                    preset = gr.Dropdown(label="Prompt preset", choices=["AI-assistant", "Historical Expert", "Math Tutor", "Python Tutor", "Language Learning Coach", "Philosopher", "Poet"], value="AI-assistant", interactive=True, allow_custom_value=False)
                    system_prompt = gr.Textbox(label="Custom system prompt", max_lines=4, lines=3, interactive=True)

            with gr.Row():
                gr.ChatInterface(
                    generate_text,
                    chatbot=chatbot,
                    retry_btn="πŸ”„οΈ",
                    submit_btn="πŸ“¨",
                    undo_btn="↩️",
                    clear_btn="πŸ—‘οΈ",
                    additional_inputs=[system_prompt, preset, temperature, max_tokens, top_k, top_k, repeat_penalty]
                )
                

            sliders_change = gr.Checkbox(label="Options", value=False, interactive=True)
            with gr.Row():
                sliders.render()
            

        with gr.Tab("πŸ’½"):
            gr.Markdown("## Download model from πŸ€— HuggingFace.co")
            with gr.Row():
                repo_id = gr.Textbox(label="REPO_ID",  value="ehristoforu/LLMs", lines=1, max_lines=1, interactive=False)
                filename = gr.Dropdown(label="FILENAME", interactive=True, choices=["llama-2-7b-chat.ggmlv3.q2_K.bin", "llama-2-13b-chat.ggmlv3.q2_K.bin", "codellama-7b-instruct.ggmlv3.Q2_K.bin", "codellama-13b-instruct.ggmlv3.Q2_K.bin", "saiga-13b.ggmlv3.Q4_1.bin", "saiga-30b.ggmlv3.Q3_K.bin"], value="", allow_custom_value=False)
                download_btn = gr.Button(value="Download")
                logs=gr.Markdown()
        with gr.Tab("πŸ“’"):
            with gr.Tab("Notebook"):
                with gr.Row():
                    notebook = gr.Textbox(show_label=False, value="This is a great day...", placeholder="Your notebook", max_lines=40, lines=35, interactive=True)
            with gr.Tab("Markdown"):
                render_markdown = gr.Button(value="Render markdown from Notebook", interactive=True)
                with gr.Row():
                    markdown = gr.Markdown()

        with gr.Tab("βš™οΈ"):
            with gr.Row():
                with gr.Column():
                    #with gr.Row():
                    #    gr.Markdown("### Style")
                    #    chat_style = gr.Dropdown(label="Style of chat", choices=["bubble", "panel"], value="bubble", interactive=True, allow_custom_value=False)
                    with gr.Row():
                        gr.Markdown("### Engine")
                        reload_model = gr.Button("Apply settings to model", interactive=True)
                        n_ctx = gr.Slider(label="Number of CTX", minimum=1024, maximum=4056, value=2048, step=8, interactive=True)
                        n_gpu_layers = gr.Slider(label="Number of GPU layers", minimum=0, maximum=36, value=0, step=1, interactive=True)
                        n_threads = gr.Slider(label="Number of Threads", minimum=2, maximum=36, value=4, step=1, interactive=True)
                        verbose = gr.Checkbox(label="Verbose", value=True, interactive=True)
                        f16_kv = gr.Checkbox(label="F16 KV", value=True, interactive=True)
                        logits_all = gr.Checkbox(label="Logits all", value=False, interactive=True)
                        vocab_only = gr.Checkbox(label="Vocab only", value=False, interactive=True)
                        use_mmap = gr.Checkbox(label="Use mmap", value=True, interactive=True)
                        use_mlock = gr.Checkbox(label="Use mlock", value=False, interactive=True)
                        n_batch = gr.Slider(label="Number of batch", minimum=128, maximum=2048, value=512, step=8, interactive=True)
                        last_n_tokens_size = gr.Slider(label="Last number of tokens size", minimum=8, maximum=512, value=64, step=8, interactive=True)
                        low_vram = gr.Checkbox(label="Low VRAM", value=False, interactive=True)
                        rope_freq_base = gr.Slider(label="Rope freq base", minimum=1000.0, maximum=30000.0, value=10000.0, step=0.1, interactive=True)
                        rope_freq_scale = gr.Slider(label="Rope freq scale", minimum=0.1, maximum=3.0, value=1.0, step=0.1)

    with gr.Row():
        gr.Markdown("""
        <center><a href="https://gradio.app">gradio 4.1.0</a> | <a href="https://github.com/ggerganov/llama.cpp">llama.cpp</a> | <a href="https://python.org">python</a> | <a href="https://huggingface.co/TheBloke?search_models=GGML">Suggested models</a></center>
        """)    
    
    render_markdown.click(
        fn=render_md,
        inputs=notebook,
        outputs=markdown,
        queue=False,
        api_name=False,
    )

    sliders_change.change(
        fn=lambda x: gr.update(visible=x),
        inputs=sliders_change,
        outputs=sliders,
        queue=False,
        api_name=False,
    )

    


    download_btn.click(download_model, inputs=[repo_id, filename], outputs=logs, api_name=False, queue=False)
                
    model.change(load_model, inputs=[model, n_ctx, n_gpu_layers, n_threads, verbose, f16_kv, logits_all, vocab_only, use_mmap, use_mlock, n_batch, last_n_tokens_size, low_vram, rope_freq_base, rope_freq_scale], outputs=model, api_name=False, queue=False)
    reload_model.click(load_model, inputs=[model, n_ctx, n_gpu_layers, n_threads, verbose, f16_kv, logits_all, vocab_only, use_mmap, use_mlock, n_batch, last_n_tokens_size, low_vram, rope_freq_base, rope_freq_scale], outputs=model, api_name=False, queue=False)



demo.launch(
    inbrowser=True,
    server_port=5555,
    debug=False,
    quiet=True,
    favicon_path="assets/favicon.png",
)