import gradio as gr from openai import OpenAI import os # Retrieve the access token from the environment variable ACCESS_TOKEN = os.getenv("HF_TOKEN") print("Access token loaded.") # Initialize the OpenAI client with the Hugging Face Inference API endpoint client = OpenAI( base_url="https://api-inference.huggingface.co/v1/", api_key=ACCESS_TOKEN, ) print("OpenAI client initialized.") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, frequency_penalty, seed, model, custom_model ): """ This function handles the chatbot response. It takes in: - message: the user's new message - history: the list of previous messages, each as a tuple (user_msg, assistant_msg) - system_message: the system prompt - max_tokens: the maximum number of tokens to generate in the response - temperature: sampling temperature - top_p: top-p (nucleus) sampling - frequency_penalty: penalize repeated tokens in the output - seed: a fixed seed for reproducibility; -1 will mean 'random' - model: the selected model - custom_model: a custom model provided by the user """ print(f"Received message: {message}") print(f"History: {history}") print(f"System message: {system_message}") print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") print(f"Model: {model}, Custom Model: {custom_model}") # Convert seed to None if -1 (meaning random) if seed == -1: seed = None # Use custom model if provided, otherwise use selected model if custom_model.strip() != "": model_to_use = custom_model.strip() else: model_to_use = model # Construct the messages array required by the API messages = [{"role": "system", "content": system_message}] # Add conversation history to the context for val in history: user_part = val[0] assistant_part = val[1] if user_part: messages.append({"role": "user", "content": user_part}) print(f"Added user message to context: {user_part}") if assistant_part: messages.append({"role": "assistant", "content": assistant_part}) print(f"Added assistant message to context: {assistant_part}") # Append the latest user message messages.append({"role": "user", "content": message}) # Start with an empty string to build the response as tokens stream in response = "" print("Sending request to OpenAI API.") # Make the streaming request to the HF Inference API via openai-like client for message_chunk in client.chat.completions.create( model=model_to_use, # Use the selected or custom model max_tokens=max_tokens, stream=True, # Stream the response temperature=temperature, top_p=top_p, frequency_penalty=frequency_penalty, seed=seed, messages=messages, ): # Extract the token text from the response chunk token_text = message_chunk.choices[0].delta.content print(f"Received token: {token_text}") response += token_text yield response print("Completed response generation.") # Create a Chatbot component with a specified height chatbot = gr.Chatbot(height=600) print("Chatbot interface created.") # List of placeholder models for demonstration models_list = [ "meta-llama/Llama-3.3-70B-Instruct", "meta-llama/Llama-2-70B-chat", "google/flan-t5-xl" ] # Function to filter models based on search input def filter_models(search_term): filtered_models = [m for m in models_list if search_term.lower() in m.lower()] return gr.update(choices=filtered_models) # Create the Gradio ChatInterface # Adding additional fields for model selection and parameters demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="", label="System message"), gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"), gr.Slider( minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty" ), gr.Slider( minimum=-1, maximum=65535, # Arbitrary upper limit for demonstration value=-1, step=1, label="Seed (-1 for random)" ), gr.Textbox(label="Custom Model", placeholder="Enter custom model path here"), gr.Accordion("Featured Models", open=True).update( gr.Column([ gr.Textbox(label="Filter Models", placeholder="Search for a featured model...").change( filter_models, inputs="__self__", outputs="model" ), gr.Radio(label="Select a model below", value="meta-llama/Llama-3.3-70B-Instruct", choices=models_list, interactive=True, elem_id="model-radio") ]) ) ], fill_height=True, chatbot=chatbot, theme="Nymbo/Nymbo_Theme", ) # Adding an "Information" tab with accordions for "Featured Models" and "Parameters Overview" with gr.Blocks(theme='Nymbo/Nymbo_Theme') as demo: with gr.Tab("Chat"): gr.Markdown("## Chat with the Model") chatbot.render() with gr.Tab("Information"): with gr.Accordion("Featured Models", open=False): gr.HTML( """
Model Name | Type | Notes |
---|---|---|
Llama-3.3-70B-Instruct | Instruction | High performance |
Llama-2-70B-chat | Chat | Conversational |
Flan-T5-XL | General | Versatile |