import gradio as gr from openai import OpenAI import os # Retrieve the access token from the environment variable ACCESS_TOKEN = os.getenv("HF_TOKEN") print("Access token loaded.") # Initialize the OpenAI client with the Hugging Face Inference API endpoint client = OpenAI( base_url="https://api-inference.huggingface.co/v1/", api_key=ACCESS_TOKEN, ) print("OpenAI client initialized.") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, frequency_penalty, seed ): """ This function handles the chatbot response. It takes in: - message: the user's new message - history: the list of previous messages, each as a tuple (user_msg, assistant_msg) - system_message: the system prompt - max_tokens: the maximum number of tokens to generate in the response - temperature: sampling temperature - top_p: top-p (nucleus) sampling - frequency_penalty: penalize repeated tokens in the output - seed: a fixed seed for reproducibility; -1 will mean 'random' """ print(f"Received message: {message}") print(f"History: {history}") print(f"System message: {system_message}") print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") # Convert seed to None if -1 (meaning random) if seed == -1: seed = None # Construct the messages array required by the API messages = [{"role": "system", "content": system_message}] # Add conversation history to the context for val in history: user_part = val[0] assistant_part = val[1] if user_part: messages.append({"role": "user", "content": user_part}) print(f"Added user message to context: {user_part}") if assistant_part: messages.append({"role": "assistant", "content": assistant_part}) print(f"Added assistant message to context: {assistant_part}") # Append the latest user message messages.append({"role": "user", "content": message}) # Start with an empty string to build the response as tokens stream in response = "" print("Sending request to OpenAI API.") # Make the streaming request to the HF Inference API via openai-like client for message_chunk in client.chat.completions.create( model="meta-llama/Llama-3.3-70B-Instruct", # You can update this to your specific model max_tokens=max_tokens, stream=True, # Stream the response temperature=temperature, top_p=top_p, frequency_penalty=frequency_penalty, # <-- NEW seed=seed, # <-- NEW messages=messages, ): # Extract the token text from the response chunk token_text = message_chunk.choices[0].delta.content print(f"Received token: {token_text}") response += token_text # As streaming progresses, yield partial output yield response print("Completed response generation.") # Create a Chatbot component with a specified height chatbot = gr.Chatbot(height=600) print("Chatbot interface created.") MODELS_LIST = [ "meta-llama/Llama-3.1-8B-Instruct", "microsoft/Phi-3.5-mini-instruct", ] def filter_models(search_term): """ Simple function to filter the placeholder model list based on the user's input """ filtered_models = [m for m in MODELS_LIST if search_term.lower() in m.lower()] return gr.update(choices=filtered_models) # -------------------------------------- # REBUILD THE INTERFACE USING BLOCKS # -------------------------------------- print("Building Gradio interface with Blocks...") with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: # Title gr.Markdown("# Serverless-TextGen-Hub") # Accordion: Parameters (sliders, etc.) with gr.Accordion("Parameters", open=True): system_message = gr.Textbox(value="", label="System message") max_tokens = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens") temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature") top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P") frequency_penalty = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty") seed = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)") # Accordion: Featured Models (Below the parameters) with gr.Accordion("Featured Models", open=False): model_search = gr.Textbox( label="Filter Models", placeholder="Search for a featured model...", lines=1 ) model_radio = gr.Radio( label="Select a model below", value=MODELS_LIST[0], # default choices=MODELS_LIST, interactive=True ) model_search.change(filter_models, inputs=model_search, outputs=model_radio) # The main ChatInterface chat_interface = gr.ChatInterface( fn=respond, additional_inputs=[ system_message, max_tokens, temperature, top_p, frequency_penalty, seed ], fill_height=True, chatbot=chatbot, theme="Nymbo/Nymbo_Theme", title="Serverless-TextGen-Hub", description="A comprehensive UI for text generation using the HF Inference API." ) print("Gradio interface initialized.") if __name__ == "__main__": print("Launching the demo application.") demo.launch()