import gradio as gr from openai import OpenAI import os import time # Retrieve the access token from the environment variable ACCESS_TOKEN = os.getenv("HF_TOKEN") print("Access token loaded.") # Initialize the OpenAI client with the Hugging Face Inference API endpoint client = OpenAI( base_url="https://api-inference.huggingface.co/v1/", api_key=ACCESS_TOKEN, ) print("OpenAI client initialized.") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, frequency_penalty, seed, model_filter, model, custom_model ): """ This function handles the chatbot response. It takes in: - message: the user's new message - history: the list of previous messages, each as a tuple (user_msg, assistant_msg) - system_message: the system prompt - max_tokens: the maximum number of tokens to generate in the response - temperature: sampling temperature - top_p: top-p (nucleus) sampling - frequency_penalty: penalize repeated tokens in the output - seed: a fixed seed for reproducibility; -1 will mean 'random' - model_filter: search term to filter available models - model: the selected model from the radio choices - custom_model: manually entered HF model path """ print(f"Received message: {message}") print(f"History: {history}") print(f"System message: {system_message}") print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") print(f"Model Filter: {model_filter}, Selected Model: {model}, Custom Model: {custom_model}") # Convert seed to None if -1 (meaning random) if seed == -1: seed = None # Construct the messages array required by the API messages = [{"role": "system", "content": system_message}] # Add conversation history to the context for val in history: user_part = val[0] assistant_part = val[1] if user_part: messages.append({"role": "user", "content": user_part}) print(f"Added user message to context: {user_part}") if assistant_part: messages.append({"role": "assistant", "content": assistant_part}) print(f"Added assistant message to context: {assistant_part}") # Append the latest user message messages.append({"role": "user", "content": message}) # Determine the model to use # Set the API URL based on the selected model or custom model if custom_model.strip() != "": api_model = custom_model.strip() else: if model == "Llama-3-70B-Instruct": api_model = "meta-llama/Llama-3.3-70B-Instruct" elif model == "Mistral-7B-Instruct-v0.2": api_model = "mistralai/Mistral-7B-Instruct-v0.2" elif model == "OpenHermes-2.5-Mistral-7B": api_model = "teknium/OpenHermes-2.5-Mistral-7B" elif model == "Phi-2": api_model = "microsoft/Phi-2" else: api_model = "meta-llama/Llama-3.3-70B-Instruct" print(f"Using model: {api_model}") # Start with an empty string to build the response as tokens stream in response = "" print(f"Sending request to OpenAI API, using model {api_model}.") # Make the streaming request to the HF Inference API via openai-like client for message_chunk in client.chat.completions.create( model=api_model, max_tokens=max_tokens, stream=True, # Stream the response temperature=temperature, top_p=top_p, frequency_penalty=frequency_penalty, seed=seed, messages=messages, ): # Extract the token text from the response chunk token_text = message_chunk.choices[0].delta.content print(f"Received token: {token_text}") # Check if token_text is None before appending if token_text is not None: response += token_text yield response print("Completed response generation.") # Placeholder list of models for the accordion models_list = [ "Llama-3-70B-Instruct", "Mistral-7B-Instruct-v0.2", "OpenHermes-2.5-Mistral-7B", "Phi-2", ] # Create a Chatbot component with a specified height chatbot = gr.Chatbot(height=600) print("Chatbot interface created.") # Create the Gradio ChatInterface demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="", label="System message"), gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"), gr.Slider( minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty" ), gr.Slider( minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)" ), gr.Textbox(label="Filter Featured Models", placeholder="Search...", lines=1), gr.Radio(label="Select a Featured Model", choices=models_list, value="Llama-3-70B-Instruct"), gr.Textbox(label="Custom Model", placeholder="Enter Hugging Face model path", lines=1), ], additional_inputs_accordion=gr.Accordion("Advanced Parameters", open=False), fill_height=True, chatbot=chatbot, theme="Nymbo/Nymbo_Theme", ) # Add the "Information" tab to the demo with gr.Tab("Information", parent=demo): with gr.Accordion("Featured Models", open=True): gr.HTML( """
Model Name | Provider | Notes |
---|---|---|
Llama-3-70B-Instruct | Meta | Powerful large language model. |
Mistral-7B-Instruct-v0.2 | Mistral AI | Efficient and versatile model. |
OpenHermes-2.5-Mistral-7B | Teknium | Community-driven, fine-tuned model. |
Phi-2 | Microsoft | Compact yet powerful model. |