import gradio as gr from openai import OpenAI import os # Retrieve the access token from the environment variable ACCESS_TOKEN = os.getenv("HF_TOKEN") print("Access token loaded.") # Initialize the OpenAI client with the Hugging Face Inference API endpoint client = OpenAI( base_url="https://api-inference.huggingface.co/v1/", api_key=ACCESS_TOKEN, ) print("OpenAI client initialized.") def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, frequency_penalty, seed, model, custom_model ): """ This function handles the chatbot response. It takes in: - message: the user's new message - history: the list of previous messages, each as a tuple (user_msg, assistant_msg) - system_message: the system prompt - max_tokens: the maximum number of tokens to generate in the response - temperature: sampling temperature - top_p: top-p (nucleus) sampling - frequency_penalty: penalize repeated tokens in the output - seed: a fixed seed for reproducibility; -1 will mean 'random' - model: the selected model from the featured list - custom_model: a custom model specified by the user """ print(f"Received message: {message}") print(f"History: {history}") print(f"System message: {system_message}") print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") print(f"Model: {model}, Custom Model: {custom_model}") # Determine the model to use if custom_model.strip() != "": selected_model = custom_model.strip() else: selected_model = model print(f"Selected model for inference: {selected_model}") # Convert seed to None if -1 (meaning random) if seed == -1: seed = None # Construct the messages array required by the API messages = [{"role": "system", "content": system_message}] # Add conversation history to the context for val in history: user_part = val[0] assistant_part = val[1] if user_part: messages.append({"role": "user", "content": user_part}) print(f"Added user message to context: {user_part}") if assistant_part: messages.append({"role": "assistant", "content": assistant_part}) print(f"Added assistant message to context: {assistant_part}") # Append the latest user message messages.append({"role": "user", "content": message}) # Start with an empty string to build the response as tokens stream in response = "" print(f"Sending request to OpenAI API using model: {selected_model}.") # Make the streaming request to the HF Inference API via openai-like client for message_chunk in client.chat.completions.create( model=selected_model, max_tokens=max_tokens, stream=True, # Stream the response temperature=temperature, top_p=top_p, frequency_penalty=frequency_penalty, seed=seed, messages=messages, ): # Extract the token text from the response chunk token_text = message_chunk.choices[0].delta.content if token_text is not None: print(f"Received token: {token_text}") response += token_text yield response print("Completed response generation.") # Create a Chatbot component with a specified height chatbot = gr.Chatbot(height=600) print("Chatbot interface created.") # Define featured models featured_models_list = [ "meta-llama/Llama-3.3-70B-Instruct", "mistralai/Mistral-7B-v0.1", "google/gemma-7b", ] # Create the Gradio ChatInterface with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo: with gr.Tab("Chat"): with gr.Row(): with gr.Column(): # Chat interface gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="", label="System message"), gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"), gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty"), gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)"), gr.Dropdown(label="Featured Models", choices=featured_models_list, value="meta-llama/Llama-3.3-70B-Instruct", interactive=True), gr.Textbox(value="", label="Custom Model (Optional)"), ], fill_height=True, chatbot=chatbot, ) with gr.Column(): # Featured models accordion with gr.Accordion("Featured Models", open=True): model_search = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1) model_radio = gr.Radio(label="Select a model below", choices=featured_models_list, value="meta-llama/Llama-3.3-70B-Instruct", interactive=True) def filter_models(search_term): filtered_models = [m for m in featured_models_list if search_term.lower() in m.lower()] return gr.update(choices=filtered_models) model_search.change(filter_models, inputs=model_search, outputs=model_radio) # Custom model textbox custom_model_textbox = gr.Textbox(label="Custom Model", placeholder="Enter a custom model path here (optional)", lines=1) with gr.Tab("Information"): with gr.Accordion("Featured Models", open=False): gr.HTML( """
Model Name | Notes |
---|---|
meta-llama/Llama-3.3-70B-Instruct | Powerful large language model. |
mistralai/Mistral-7B-v0.1 | A smaller, efficient model. |
google/gemma-7b | Google's language model. |