Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
from openai import OpenAI
|
3 |
import os
|
|
|
4 |
|
5 |
# Retrieve the access token from the environment variable
|
6 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
@@ -22,6 +23,7 @@ def respond(
|
|
22 |
top_p,
|
23 |
frequency_penalty,
|
24 |
seed,
|
|
|
25 |
model,
|
26 |
custom_model
|
27 |
):
|
@@ -35,8 +37,9 @@ def respond(
|
|
35 |
- top_p: top-p (nucleus) sampling
|
36 |
- frequency_penalty: penalize repeated tokens in the output
|
37 |
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
38 |
-
-
|
39 |
-
-
|
|
|
40 |
"""
|
41 |
|
42 |
print(f"Received message: {message}")
|
@@ -44,18 +47,12 @@ def respond(
|
|
44 |
print(f"System message: {system_message}")
|
45 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
46 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
47 |
-
print(f"Model: {model}, Custom Model: {custom_model}")
|
48 |
|
49 |
# Convert seed to None if -1 (meaning random)
|
50 |
if seed == -1:
|
51 |
seed = None
|
52 |
|
53 |
-
# Use custom model if provided, otherwise use selected model
|
54 |
-
if custom_model.strip() != "":
|
55 |
-
model_to_use = custom_model.strip()
|
56 |
-
else:
|
57 |
-
model_to_use = model
|
58 |
-
|
59 |
# Construct the messages array required by the API
|
60 |
messages = [{"role": "system", "content": system_message}]
|
61 |
|
@@ -73,13 +70,30 @@ def respond(
|
|
73 |
# Append the latest user message
|
74 |
messages.append({"role": "user", "content": message})
|
75 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
76 |
# Start with an empty string to build the response as tokens stream in
|
77 |
response = ""
|
78 |
-
print("Sending request to OpenAI API.")
|
79 |
|
80 |
# Make the streaming request to the HF Inference API via openai-like client
|
81 |
for message_chunk in client.chat.completions.create(
|
82 |
-
model=
|
83 |
max_tokens=max_tokens,
|
84 |
stream=True, # Stream the response
|
85 |
temperature=temperature,
|
@@ -91,36 +105,34 @@ def respond(
|
|
91 |
# Extract the token text from the response chunk
|
92 |
token_text = message_chunk.choices[0].delta.content
|
93 |
print(f"Received token: {token_text}")
|
94 |
-
response += token_text
|
95 |
-
yield response
|
96 |
|
97 |
-
|
|
|
|
|
|
|
98 |
|
99 |
-
|
100 |
-
chatbot = gr.Chatbot(height=600)
|
101 |
-
print("Chatbot interface created.")
|
102 |
|
103 |
-
#
|
104 |
models_list = [
|
105 |
-
"
|
106 |
-
"
|
107 |
-
"
|
|
|
108 |
]
|
109 |
|
110 |
-
#
|
111 |
-
|
112 |
-
|
113 |
-
return gr.update(choices=filtered_models)
|
114 |
|
115 |
# Create the Gradio ChatInterface
|
116 |
-
# Adding additional fields for model selection and parameters
|
117 |
demo = gr.ChatInterface(
|
118 |
respond,
|
119 |
additional_inputs=[
|
120 |
gr.Textbox(value="", label="System message"),
|
121 |
-
gr.Slider(minimum=1,
|
122 |
-
gr.Slider(minimum=0.1, maximum=4.0,
|
123 |
-
gr.Slider(minimum=0.1, maximum=1.0,
|
124 |
gr.Slider(
|
125 |
minimum=-2.0,
|
126 |
maximum=2.0,
|
@@ -130,80 +142,90 @@ demo = gr.ChatInterface(
|
|
130 |
),
|
131 |
gr.Slider(
|
132 |
minimum=-1,
|
133 |
-
maximum=65535,
|
134 |
value=-1,
|
135 |
step=1,
|
136 |
label="Seed (-1 for random)"
|
137 |
),
|
138 |
-
gr.Textbox(label="
|
139 |
-
gr.
|
140 |
-
|
141 |
-
gr.Textbox(label="Filter Models", placeholder="Search for a featured model...").change(
|
142 |
-
filter_models, inputs="__self__", outputs="model"
|
143 |
-
),
|
144 |
-
gr.Radio(label="Select a model below", value="meta-llama/Llama-3.3-70B-Instruct", choices=models_list, interactive=True, elem_id="model-radio")
|
145 |
-
])
|
146 |
-
)
|
147 |
],
|
|
|
148 |
fill_height=True,
|
149 |
chatbot=chatbot,
|
150 |
theme="Nymbo/Nymbo_Theme",
|
151 |
)
|
152 |
|
153 |
-
#
|
154 |
-
with gr.
|
155 |
-
with gr.
|
156 |
-
gr.
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
<
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import gradio as gr
|
2 |
from openai import OpenAI
|
3 |
import os
|
4 |
+
import time
|
5 |
|
6 |
# Retrieve the access token from the environment variable
|
7 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
|
|
23 |
top_p,
|
24 |
frequency_penalty,
|
25 |
seed,
|
26 |
+
model_filter,
|
27 |
model,
|
28 |
custom_model
|
29 |
):
|
|
|
37 |
- top_p: top-p (nucleus) sampling
|
38 |
- frequency_penalty: penalize repeated tokens in the output
|
39 |
- seed: a fixed seed for reproducibility; -1 will mean 'random'
|
40 |
+
- model_filter: search term to filter available models
|
41 |
+
- model: the selected model from the radio choices
|
42 |
+
- custom_model: manually entered HF model path
|
43 |
"""
|
44 |
|
45 |
print(f"Received message: {message}")
|
|
|
47 |
print(f"System message: {system_message}")
|
48 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
49 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
50 |
+
print(f"Model Filter: {model_filter}, Selected Model: {model}, Custom Model: {custom_model}")
|
51 |
|
52 |
# Convert seed to None if -1 (meaning random)
|
53 |
if seed == -1:
|
54 |
seed = None
|
55 |
|
|
|
|
|
|
|
|
|
|
|
|
|
56 |
# Construct the messages array required by the API
|
57 |
messages = [{"role": "system", "content": system_message}]
|
58 |
|
|
|
70 |
# Append the latest user message
|
71 |
messages.append({"role": "user", "content": message})
|
72 |
|
73 |
+
# Determine the model to use
|
74 |
+
# Set the API URL based on the selected model or custom model
|
75 |
+
if custom_model.strip() != "":
|
76 |
+
api_model = custom_model.strip()
|
77 |
+
else:
|
78 |
+
if model == "Llama-3-70B-Instruct":
|
79 |
+
api_model = "meta-llama/Llama-3.3-70B-Instruct"
|
80 |
+
elif model == "Mistral-7B-Instruct-v0.2":
|
81 |
+
api_model = "mistralai/Mistral-7B-Instruct-v0.2"
|
82 |
+
elif model == "OpenHermes-2.5-Mistral-7B":
|
83 |
+
api_model = "teknium/OpenHermes-2.5-Mistral-7B"
|
84 |
+
elif model == "Phi-2":
|
85 |
+
api_model = "microsoft/Phi-2"
|
86 |
+
else:
|
87 |
+
api_model = "meta-llama/Llama-3.3-70B-Instruct"
|
88 |
+
print(f"Using model: {api_model}")
|
89 |
+
|
90 |
# Start with an empty string to build the response as tokens stream in
|
91 |
response = ""
|
92 |
+
print(f"Sending request to OpenAI API, using model {api_model}.")
|
93 |
|
94 |
# Make the streaming request to the HF Inference API via openai-like client
|
95 |
for message_chunk in client.chat.completions.create(
|
96 |
+
model=api_model,
|
97 |
max_tokens=max_tokens,
|
98 |
stream=True, # Stream the response
|
99 |
temperature=temperature,
|
|
|
105 |
# Extract the token text from the response chunk
|
106 |
token_text = message_chunk.choices[0].delta.content
|
107 |
print(f"Received token: {token_text}")
|
|
|
|
|
108 |
|
109 |
+
# Check if token_text is None before appending
|
110 |
+
if token_text is not None:
|
111 |
+
response += token_text
|
112 |
+
yield response
|
113 |
|
114 |
+
print("Completed response generation.")
|
|
|
|
|
115 |
|
116 |
+
# Placeholder list of models for the accordion
|
117 |
models_list = [
|
118 |
+
"Llama-3-70B-Instruct",
|
119 |
+
"Mistral-7B-Instruct-v0.2",
|
120 |
+
"OpenHermes-2.5-Mistral-7B",
|
121 |
+
"Phi-2",
|
122 |
]
|
123 |
|
124 |
+
# Create a Chatbot component with a specified height
|
125 |
+
chatbot = gr.Chatbot(height=600)
|
126 |
+
print("Chatbot interface created.")
|
|
|
127 |
|
128 |
# Create the Gradio ChatInterface
|
|
|
129 |
demo = gr.ChatInterface(
|
130 |
respond,
|
131 |
additional_inputs=[
|
132 |
gr.Textbox(value="", label="System message"),
|
133 |
+
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"),
|
134 |
+
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
135 |
+
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
|
136 |
gr.Slider(
|
137 |
minimum=-2.0,
|
138 |
maximum=2.0,
|
|
|
142 |
),
|
143 |
gr.Slider(
|
144 |
minimum=-1,
|
145 |
+
maximum=65535,
|
146 |
value=-1,
|
147 |
step=1,
|
148 |
label="Seed (-1 for random)"
|
149 |
),
|
150 |
+
gr.Textbox(label="Filter Featured Models", placeholder="Search...", lines=1),
|
151 |
+
gr.Radio(label="Select a Featured Model", choices=models_list, value="Llama-3-70B-Instruct"),
|
152 |
+
gr.Textbox(label="Custom Model", placeholder="Enter Hugging Face model path", lines=1),
|
|
|
|
|
|
|
|
|
|
|
|
|
153 |
],
|
154 |
+
additional_inputs_accordion=gr.Accordion("Advanced Parameters", open=False),
|
155 |
fill_height=True,
|
156 |
chatbot=chatbot,
|
157 |
theme="Nymbo/Nymbo_Theme",
|
158 |
)
|
159 |
|
160 |
+
# Add the "Information" tab to the demo
|
161 |
+
with gr.Tab("Information", parent=demo):
|
162 |
+
with gr.Accordion("Featured Models", open=True):
|
163 |
+
gr.HTML(
|
164 |
+
"""
|
165 |
+
<table style="width:100%; text-align:center; margin:auto;">
|
166 |
+
<tr>
|
167 |
+
<th>Model Name</th>
|
168 |
+
<th>Provider</th>
|
169 |
+
<th>Notes</th>
|
170 |
+
</tr>
|
171 |
+
<tr>
|
172 |
+
<td>Llama-3-70B-Instruct</td>
|
173 |
+
<td>Meta</td>
|
174 |
+
<td>Powerful large language model.</td>
|
175 |
+
</tr>
|
176 |
+
<tr>
|
177 |
+
<td>Mistral-7B-Instruct-v0.2</td>
|
178 |
+
<td>Mistral AI</td>
|
179 |
+
<td>Efficient and versatile model.</td>
|
180 |
+
</tr>
|
181 |
+
<tr>
|
182 |
+
<td>OpenHermes-2.5-Mistral-7B</td>
|
183 |
+
<td>Teknium</td>
|
184 |
+
<td>Community-driven, fine-tuned model.</td>
|
185 |
+
</tr>
|
186 |
+
<tr>
|
187 |
+
<td>Phi-2</td>
|
188 |
+
<td>Microsoft</td>
|
189 |
+
<td>Compact yet powerful model.</td>
|
190 |
+
</tr>
|
191 |
+
</table>
|
192 |
+
"""
|
193 |
+
)
|
194 |
+
with gr.Accordion("Parameters Overview", open=False):
|
195 |
+
gr.Markdown(
|
196 |
+
"""
|
197 |
+
## System Message
|
198 |
+
###### The system message sets the behavior and persona of the chatbot. It's a way to provide context and instructions to the AI. For example, you can tell it to act as a helpful assistant, a storyteller, or any other role.
|
199 |
+
## Max New Tokens
|
200 |
+
###### This setting limits the length of the response generated by the AI. A higher number allows for longer, more detailed responses, while a lower number keeps the responses concise.
|
201 |
+
## Temperature
|
202 |
+
###### Temperature controls the randomness of the AI's output. A higher temperature makes the responses more creative and varied, while a lower temperature makes them more predictable and focused.
|
203 |
+
## Top-P (Nucleus Sampling)
|
204 |
+
###### Top-P sampling is a way to control the diversity of the AI's responses. It sets a threshold for the cumulative probability of the most likely next words. The AI then randomly selects from the words whose probabilities add up to this threshold. A lower Top-P value means less diversity.
|
205 |
+
## Frequency Penalty
|
206 |
+
###### Frequency penalty discourages the AI from repeating the same words or phrases too often in its responses. A higher penalty means the AI is less likely to repeat itself.
|
207 |
+
## Seed
|
208 |
+
###### The seed is a starting point for the random number generator that influences the AI's responses. If you set a specific seed, you'll get the same response every time you use that seed with the same prompt and settings. If you set it to -1, the AI will generate a new seed each time, leading to different responses.
|
209 |
+
## Featured Models
|
210 |
+
###### This section lists pre-selected models that are known to perform well. You can filter the list by typing in the search box.
|
211 |
+
## Custom Model
|
212 |
+
###### If you want to use a model that's not in the featured list, you can enter its Hugging Face model path here.
|
213 |
+
### Feel free to experiment with these settings to see how they affect the AI's responses. Happy chatting!
|
214 |
+
"""
|
215 |
+
)
|
216 |
+
|
217 |
+
# Filter models function
|
218 |
+
def filter_models(search_term, model_radio):
|
219 |
+
filtered_models = [m for m in models_list if search_term.lower() in m.lower()]
|
220 |
+
if not filtered_models:
|
221 |
+
filtered_models = ["No matching models"] # Provide feedback
|
222 |
+
return gr.Radio.update(choices=filtered_models)
|
223 |
+
|
224 |
+
# Update model list when search box is used
|
225 |
+
demo.additional_inputs[6].change(filter_models, inputs=[demo.additional_inputs[6], demo.additional_inputs[7]], outputs=demo.additional_inputs[7])
|
226 |
+
|
227 |
+
print("Gradio interface initialized.")
|
228 |
+
|
229 |
+
if __name__ == "__main__":
|
230 |
+
print("Launching the demo application.")
|
231 |
+
demo.queue().launch()
|