Spaces:
Running
Running
import gradio as gr | |
from openai import OpenAI | |
import os | |
# Retrieve the access token from the environment variable | |
ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
print("Access token loaded.") | |
# Initialize the OpenAI client with the Hugging Face Inference API endpoint | |
client = OpenAI( | |
base_url="https://api-inference.huggingface.co/v1/", | |
api_key=ACCESS_TOKEN, | |
) | |
print("OpenAI client initialized.") | |
def respond( | |
message, | |
history: list[tuple[str, str]], | |
system_message, | |
max_tokens, | |
temperature, | |
top_p, | |
frequency_penalty, | |
seed, | |
custom_model | |
): | |
""" | |
This function handles the chatbot response. It takes in: | |
- message: the user's new message | |
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg) | |
- system_message: the system prompt | |
- max_tokens: the maximum number of tokens to generate in the response | |
- temperature: sampling temperature | |
- top_p: top-p (nucleus) sampling | |
- frequency_penalty: penalize repeated tokens in the output | |
- seed: a fixed seed for reproducibility; -1 will mean 'random' | |
- custom_model: the final model name in use, which may be set by selecting from the Featured Models radio or by typing a custom model | |
""" | |
print(f"Received message: {message}") | |
print(f"History: {history}") | |
print(f"System message: {system_message}") | |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
print(f"Selected model (custom_model): {custom_model}") | |
# Convert seed to None if -1 (meaning random) | |
if seed == -1: | |
seed = None | |
# Construct the messages array required by the API | |
messages = [{"role": "system", "content": system_message}] | |
# Add conversation history to the context | |
for val in history: | |
user_part = val[0] | |
assistant_part = val[1] | |
if user_part: | |
messages.append({"role": "user", "content": user_part}) | |
print(f"Added user message to context: {user_part}") | |
if assistant_part: | |
messages.append({"role": "assistant", "content": assistant_part}) | |
print(f"Added assistant message to context: {assistant_part}") | |
# Append the latest user message | |
messages.append({"role": "user", "content": message}) | |
# If user provided a model, use that; otherwise, fall back to a default | |
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct" | |
print(f"Model selected for inference: {model_to_use}") | |
# Start with an empty string to build the response as tokens stream in | |
response = "" | |
print("Sending request to OpenAI API.") | |
# Make the streaming request to the HF Inference API via openai-like client | |
for message_chunk in client.chat.completions.create( | |
model=model_to_use, # Use either the user-provided or default model | |
max_tokens=max_tokens, | |
stream=True, # Stream the response | |
temperature=temperature, | |
top_p=top_p, | |
frequency_penalty=frequency_penalty, | |
seed=seed, | |
messages=messages, | |
): | |
# Extract the token text from the response chunk | |
token_text = message_chunk.choices[0].delta.content | |
print(f"Received token: {token_text}") | |
response += token_text | |
# Yield the partial response to Gradio so it can display in real-time | |
yield response | |
print("Completed response generation.") | |
# ------------------------- | |
# GRADIO UI CONFIGURATION | |
# ------------------------- | |
# Create a Chatbot component with a specified height | |
chatbot = gr.Chatbot(height=600) | |
print("Chatbot interface created.") | |
# We'll create text boxes & sliders for system prompt, tokens, etc. | |
system_message_box = gr.Textbox(value="", label="System message") | |
max_tokens_slider = gr.Slider( | |
minimum=1, | |
maximum=4096, | |
value=512, | |
step=1, | |
label="Max new tokens" | |
) | |
temperature_slider = gr.Slider( | |
minimum=0.1, | |
maximum=4.0, | |
value=0.7, | |
step=0.1, | |
label="Temperature" | |
) | |
top_p_slider = gr.Slider( | |
minimum=0.1, | |
maximum=1.0, | |
value=0.95, | |
step=0.05, | |
label="Top-P" | |
) | |
frequency_penalty_slider = gr.Slider( | |
minimum=-2.0, | |
maximum=2.0, | |
value=0.0, | |
step=0.1, | |
label="Frequency Penalty" | |
) | |
seed_slider = gr.Slider( | |
minimum=-1, | |
maximum=65535, | |
value=-1, | |
step=1, | |
label="Seed (-1 for random)" | |
) | |
# The custom_model_box is what the respond function sees as "custom_model" | |
custom_model_box = gr.Textbox( | |
value="", | |
label="Custom Model", | |
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model." | |
) | |
# Define a function that, when a user selects a model from the radio, populates `custom_model_box` | |
def set_custom_model_from_radio(selected): | |
""" | |
This function will get triggered whenever someone picks a model from the 'Featured Models' radio. | |
We will update the Custom Model text box with that selection automatically. | |
""" | |
return selected | |
# The main ChatInterface object | |
demo = gr.ChatInterface( | |
fn=respond, | |
# For ChatInterface, we can pass additional inputs in order to feed them into the "respond" function | |
additional_inputs=[ | |
system_message_box, | |
max_tokens_slider, | |
temperature_slider, | |
top_p_slider, | |
frequency_penalty_slider, | |
seed_slider, | |
custom_model_box | |
], | |
fill_height=True, | |
chatbot=chatbot, | |
theme="Nymbo/Nymbo_Theme", | |
) | |
# ----------- | |
# ADDING THE "FEATURED MODELS" ACCORDION | |
# ----------- | |
with demo: | |
with gr.Accordion("Featured Models", open=False): | |
model_search_box = gr.Textbox( | |
label="Filter Models", | |
placeholder="Search for a featured model...", | |
lines=1 | |
) | |
# Sample list of popular text models | |
models_list = [ | |
"meta-llama/Llama-3.3-70B-Instruct", | |
"bigscience/bloomz-7b1", | |
"OpenAssistant/oasst-sft-1-pythia-12b", | |
"OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5", | |
"tiiuae/falcon-7b-instruct", | |
"OpenAI/gpt-3.5-turbo", | |
"OpenAI/gpt-4-32k", | |
"meta-llama/Llama-2-13B-chat-hf", | |
"meta-llama/Llama-2-70B-chat-hf", | |
] | |
featured_model_radio = gr.Radio( | |
label="Select a model below", | |
choices=models_list, | |
value="meta-llama/Llama-3.3-70B-Instruct", | |
interactive=True | |
) | |
# Filter function for the radio | |
def filter_models(search_term): | |
filtered = [m for m in models_list if search_term.lower() in m.lower()] | |
return gr.update(choices=filtered) | |
# Whenever we type in the search box, update the radio with the filtered list | |
model_search_box.change( | |
fn=filter_models, | |
inputs=model_search_box, | |
outputs=featured_model_radio | |
) | |
# Whenever we select a featured model, populate the 'Custom Model' textbox | |
featured_model_radio.change( | |
fn=set_custom_model_from_radio, | |
inputs=featured_model_radio, | |
outputs=custom_model_box | |
) | |
print("Gradio interface initialized.") | |
if __name__ == "__main__": | |
print("Launching the demo application.") | |
demo.launch() |