Spaces:
Running
Running
| import gradio as gr | |
| from openai import OpenAI | |
| import os | |
| # Retrieve the access token from the environment variable | |
| ACCESS_TOKEN = os.getenv("HF_TOKEN") | |
| print("Access token loaded.") | |
| # Initialize the OpenAI client with the Hugging Face Inference API endpoint | |
| client = OpenAI( | |
| base_url="https://api-inference.huggingface.co/v1/", | |
| api_key=ACCESS_TOKEN, | |
| ) | |
| print("OpenAI client initialized.") | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| frequency_penalty, | |
| seed, | |
| custom_model | |
| ): | |
| """ | |
| This function handles the chatbot response. It takes in: | |
| - message: the user's new message | |
| - history: the list of previous messages, each as a tuple (user_msg, assistant_msg) | |
| - system_message: the system prompt | |
| - max_tokens: the maximum number of tokens to generate in the response | |
| - temperature: sampling temperature | |
| - top_p: top-p (nucleus) sampling | |
| - frequency_penalty: penalize repeated tokens in the output | |
| - seed: a fixed seed for reproducibility; -1 will mean 'random' | |
| - custom_model: the final model name in use, which may be set by selecting from the Featured Models radio or by typing a custom model | |
| """ | |
| print(f"Received message: {message}") | |
| print(f"History: {history}") | |
| print(f"System message: {system_message}") | |
| print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}") | |
| print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}") | |
| print(f"Selected model (custom_model): {custom_model}") | |
| # Convert seed to None if -1 (meaning random) | |
| if seed == -1: | |
| seed = None | |
| # Construct the messages array required by the API | |
| messages = [{"role": "system", "content": system_message}] | |
| print("Initial messages array constructed.") | |
| # Add conversation history to the context | |
| for val in history: | |
| user_part = val[0] # Extract user message from the tuple | |
| assistant_part = val[1] # Extract assistant message from the tuple | |
| if user_part: | |
| messages.append({"role": "user", "content": user_part}) # Append user message | |
| print(f"Added user message to context: {user_part}") | |
| if assistant_part: | |
| messages.append({"role": "assistant", "content": assistant_part}) # Append assistant message | |
| print(f"Added assistant message to context: {assistant_part}") | |
| # Append the latest user message | |
| messages.append({"role": "user", "content": message}) | |
| print("Latest user message appended.") | |
| # If user provided a model, use that; otherwise, fall back to a default model | |
| model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct" | |
| print(f"Model selected for inference: {model_to_use}") | |
| # Start with an empty string to build the response as tokens stream in | |
| response = "" | |
| print("Sending request to OpenAI API.") | |
| # Make the streaming request to the HF Inference API via openai-like client | |
| for message_chunk in client.chat.completions.create( | |
| model=model_to_use, # Use either the user-provided or default model | |
| max_tokens=max_tokens, # Maximum tokens for the response | |
| stream=True, # Enable streaming responses | |
| temperature=temperature, # Adjust randomness in response | |
| top_p=top_p, # Control diversity in response generation | |
| frequency_penalty=frequency_penalty, # Penalize repeated phrases | |
| seed=seed, # Set random seed for reproducibility | |
| messages=messages, # Contextual conversation messages | |
| ): | |
| # Extract the token text from the response chunk | |
| token_text = message_chunk.choices[0].delta.content | |
| print(f"Received token: {token_text}") | |
| response += token_text | |
| # Yield the partial response to Gradio so it can display in real-time | |
| yield response | |
| print("Completed response generation.") | |
| # ------------------------- | |
| # GRADIO UI CONFIGURATION | |
| # ------------------------- | |
| # Create a Chatbot component with a specified height | |
| chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", likeable=True, layout="panel") # Define the height of the chatbot interface | |
| print("Chatbot interface created.") | |
| # Create textboxes and sliders for system prompt, tokens, and other parameters | |
| system_message_box = gr.Textbox(value="", label="System message") # Input box for system message | |
| max_tokens_slider = gr.Slider( | |
| minimum=1, # Minimum allowable tokens | |
| maximum=4096, # Maximum allowable tokens | |
| value=512, # Default value | |
| step=1, # Increment step size | |
| label="Max new tokens" # Slider label | |
| ) | |
| temperature_slider = gr.Slider( | |
| minimum=0.1, # Minimum temperature | |
| maximum=4.0, # Maximum temperature | |
| value=0.7, # Default value | |
| step=0.1, # Increment step size | |
| label="Temperature" # Slider label | |
| ) | |
| top_p_slider = gr.Slider( | |
| minimum=0.1, # Minimum top-p value | |
| maximum=1.0, # Maximum top-p value | |
| value=0.95, # Default value | |
| step=0.05, # Increment step size | |
| label="Top-P" # Slider label | |
| ) | |
| frequency_penalty_slider = gr.Slider( | |
| minimum=-2.0, # Minimum penalty | |
| maximum=2.0, # Maximum penalty | |
| value=0.0, # Default value | |
| step=0.1, # Increment step size | |
| label="Frequency Penalty" # Slider label | |
| ) | |
| seed_slider = gr.Slider( | |
| minimum=-1, # -1 for random seed | |
| maximum=65535, # Maximum seed value | |
| value=-1, # Default value | |
| step=1, # Increment step size | |
| label="Seed (-1 for random)" # Slider label | |
| ) | |
| # The custom_model_box is what the respond function sees as "custom_model" | |
| custom_model_box = gr.Textbox( | |
| value="", # Default value | |
| label="Custom Model", # Label for the textbox | |
| info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model." # Additional info | |
| ) | |
| # Define a function that updates the custom model box when a featured model is selected | |
| def set_custom_model_from_radio(selected): | |
| """ | |
| This function will get triggered whenever someone picks a model from the 'Featured Models' radio. | |
| We will update the Custom Model text box with that selection automatically. | |
| """ | |
| print(f"Featured model selected: {selected}") # Log selected model | |
| return selected | |
| # Create the main ChatInterface object | |
| demo = gr.ChatInterface( | |
| fn=respond, # The function to handle responses | |
| additional_inputs=[ | |
| system_message_box, # System message input | |
| max_tokens_slider, # Max tokens slider | |
| temperature_slider, # Temperature slider | |
| top_p_slider, # Top-P slider | |
| frequency_penalty_slider, # Frequency penalty slider | |
| seed_slider, # Seed slider | |
| custom_model_box # Custom model input | |
| ], | |
| fill_height=True, # Allow the chatbot to fill the container height | |
| chatbot=chatbot, # Chatbot UI component | |
| textbox=gr.MultimodalTextbox(), | |
| multimodal=True, | |
| concurrency_limit=20, | |
| theme="Nymbo/Nymbo_Theme", # Theme for the interface | |
| examples=[{"text": "Howdy, partner!",}, | |
| {"text": "What's your model name and who trained you?",}, | |
| {"text": "How many R's are there in the word Strawberry?"},], | |
| cache_examples=False | |
| ) | |
| print("ChatInterface object created.") | |
| # ----------- | |
| # ADDING THE "FEATURED MODELS" ACCORDION | |
| # ----------- | |
| with demo: | |
| with gr.Accordion("Featured Models", open=False): # Collapsible section for featured models | |
| model_search_box = gr.Textbox( | |
| label="Filter Models", # Label for the search box | |
| placeholder="Search for a featured model...", # Placeholder text | |
| lines=1 # Single-line input | |
| ) | |
| print("Model search box created.") | |
| # Sample list of popular text models | |
| models_list = [ | |
| "meta-llama/Llama-3.3-70B-Instruct", | |
| "meta-llama/Llama-3.2-3B-Instruct", | |
| "meta-llama/Llama-3.2-1B-Instruct", | |
| "meta-llama/Llama-3.1-8B-Instruct", | |
| "NousResearch/Hermes-3-Llama-3.1-8B", | |
| "google/gemma-2-27b-it", | |
| "google/gemma-2-9b-it", | |
| "google/gemma-2-2b-it", | |
| "mistralai/Mistral-Nemo-Instruct-2407", | |
| "mistralai/Mixtral-8x7B-Instruct-v0.1", | |
| "mistralai/Mistral-7B-Instruct-v0.3", | |
| "Qwen/Qwen2.5-72B-Instruct", | |
| "Qwen/QwQ-32B-Preview", | |
| "PowerInfer/SmallThinker-3B-Preview", | |
| "HuggingFaceTB/SmolLM2-1.7B-Instruct", | |
| "TinyLlama/TinyLlama-1.1B-Chat-v1.0", | |
| "microsoft/Phi-3.5-mini-instruct", | |
| ] | |
| print("Models list initialized.") | |
| featured_model_radio = gr.Radio( | |
| label="Select a model below", # Label for the radio buttons | |
| choices=models_list, # List of available models | |
| value="meta-llama/Llama-3.3-70B-Instruct", # Default selection | |
| interactive=True # Allow user interaction | |
| ) | |
| print("Featured models radio button created.") | |
| # Filter function for the radio button list | |
| def filter_models(search_term): | |
| print(f"Filtering models with search term: {search_term}") # Log the search term | |
| filtered = [m for m in models_list if search_term.lower() in m.lower()] # Filter models by search term | |
| print(f"Filtered models: {filtered}") # Log filtered models | |
| return gr.update(choices=filtered) | |
| # Update the radio list when the search box value changes | |
| model_search_box.change( | |
| fn=filter_models, # Function to filter models | |
| inputs=model_search_box, # Input: search box value | |
| outputs=featured_model_radio # Output: update radio button list | |
| ) | |
| print("Model search box change event linked.") | |
| # Update the custom model textbox when a featured model is selected | |
| featured_model_radio.change( | |
| fn=set_custom_model_from_radio, # Function to set custom model | |
| inputs=featured_model_radio, # Input: selected model | |
| outputs=custom_model_box # Output: update custom model textbox | |
| ) | |
| print("Featured model radio button change event linked.") | |
| print("Gradio interface initialized.") | |
| if __name__ == "__main__": | |
| print("Launching the demo application.") | |
| demo.launch() |