Nymbo's picture
Update app.py
ad258d3 verified
raw
history blame
10.6 kB
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model
):
"""
This function handles the chatbot response. It takes in:
- message: the user's new message
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
- system_message: the system prompt
- max_tokens: the maximum number of tokens to generate in the response
- temperature: sampling temperature
- top_p: top-p (nucleus) sampling
- frequency_penalty: penalize repeated tokens in the output
- seed: a fixed seed for reproducibility; -1 will mean 'random'
- custom_model: the final model name in use, which may be set by selecting from the Featured Models radio or by typing a custom model
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected model (custom_model): {custom_model}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Construct the messages array required by the API
messages = [{"role": "system", "content": system_message}]
print("Initial messages array constructed.")
# Add conversation history to the context
for val in history:
user_part = val[0] # Extract user message from the tuple
assistant_part = val[1] # Extract assistant message from the tuple
if user_part:
messages.append({"role": "user", "content": user_part}) # Append user message
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part}) # Append assistant message
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
print("Latest user message appended.")
# If user provided a model, use that; otherwise, fall back to a default model
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
print(f"Model selected for inference: {model_to_use}")
# Start with an empty string to build the response as tokens stream in
response = ""
print("Sending request to OpenAI API.")
# Make the streaming request to the HF Inference API via openai-like client
for message_chunk in client.chat.completions.create(
model=model_to_use, # Use either the user-provided or default model
max_tokens=max_tokens, # Maximum tokens for the response
stream=True, # Enable streaming responses
temperature=temperature, # Adjust randomness in response
top_p=top_p, # Control diversity in response generation
frequency_penalty=frequency_penalty, # Penalize repeated phrases
seed=seed, # Set random seed for reproducibility
messages=messages, # Contextual conversation messages
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response += token_text
# Yield the partial response to Gradio so it can display in real-time
yield response
print("Completed response generation.")
# -------------------------
# GRADIO UI CONFIGURATION
# -------------------------
# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", likeable=True, layout="panel") # Define the height of the chatbot interface
print("Chatbot interface created.")
# Create textboxes and sliders for system prompt, tokens, and other parameters
system_message_box = gr.Textbox(value="", label="System message") # Input box for system message
max_tokens_slider = gr.Slider(
minimum=1, # Minimum allowable tokens
maximum=4096, # Maximum allowable tokens
value=512, # Default value
step=1, # Increment step size
label="Max new tokens" # Slider label
)
temperature_slider = gr.Slider(
minimum=0.1, # Minimum temperature
maximum=4.0, # Maximum temperature
value=0.7, # Default value
step=0.1, # Increment step size
label="Temperature" # Slider label
)
top_p_slider = gr.Slider(
minimum=0.1, # Minimum top-p value
maximum=1.0, # Maximum top-p value
value=0.95, # Default value
step=0.05, # Increment step size
label="Top-P" # Slider label
)
frequency_penalty_slider = gr.Slider(
minimum=-2.0, # Minimum penalty
maximum=2.0, # Maximum penalty
value=0.0, # Default value
step=0.1, # Increment step size
label="Frequency Penalty" # Slider label
)
seed_slider = gr.Slider(
minimum=-1, # -1 for random seed
maximum=65535, # Maximum seed value
value=-1, # Default value
step=1, # Increment step size
label="Seed (-1 for random)" # Slider label
)
# The custom_model_box is what the respond function sees as "custom_model"
custom_model_box = gr.Textbox(
value="", # Default value
label="Custom Model", # Label for the textbox
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model." # Additional info
)
# Define a function that updates the custom model box when a featured model is selected
def set_custom_model_from_radio(selected):
"""
This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
We will update the Custom Model text box with that selection automatically.
"""
print(f"Featured model selected: {selected}") # Log selected model
return selected
# Create the main ChatInterface object
demo = gr.ChatInterface(
fn=respond, # The function to handle responses
additional_inputs=[
system_message_box, # System message input
max_tokens_slider, # Max tokens slider
temperature_slider, # Temperature slider
top_p_slider, # Top-P slider
frequency_penalty_slider, # Frequency penalty slider
seed_slider, # Seed slider
custom_model_box # Custom model input
],
fill_height=True, # Allow the chatbot to fill the container height
chatbot=chatbot, # Chatbot UI component
textbox=gr.MultimodalTextbox(),
multimodal=True,
concurrency_limit=20,
theme="Nymbo/Nymbo_Theme", # Theme for the interface
examples=[{"text": "Howdy, partner!",},
{"text": "What's your model name and who trained you?",},
{"text": "How many R's are there in the word Strawberry?"},],
cache_examples=False
)
print("ChatInterface object created.")
# -----------
# ADDING THE "FEATURED MODELS" ACCORDION
# -----------
with demo:
with gr.Accordion("Featured Models", open=False): # Collapsible section for featured models
model_search_box = gr.Textbox(
label="Filter Models", # Label for the search box
placeholder="Search for a featured model...", # Placeholder text
lines=1 # Single-line input
)
print("Model search box created.")
# Sample list of popular text models
models_list = [
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"NousResearch/Hermes-3-Llama-3.1-8B",
"google/gemma-2-27b-it",
"google/gemma-2-9b-it",
"google/gemma-2-2b-it",
"mistralai/Mistral-Nemo-Instruct-2407",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3",
"Qwen/Qwen2.5-72B-Instruct",
"Qwen/QwQ-32B-Preview",
"PowerInfer/SmallThinker-3B-Preview",
"HuggingFaceTB/SmolLM2-1.7B-Instruct",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"microsoft/Phi-3.5-mini-instruct",
]
print("Models list initialized.")
featured_model_radio = gr.Radio(
label="Select a model below", # Label for the radio buttons
choices=models_list, # List of available models
value="meta-llama/Llama-3.3-70B-Instruct", # Default selection
interactive=True # Allow user interaction
)
print("Featured models radio button created.")
# Filter function for the radio button list
def filter_models(search_term):
print(f"Filtering models with search term: {search_term}") # Log the search term
filtered = [m for m in models_list if search_term.lower() in m.lower()] # Filter models by search term
print(f"Filtered models: {filtered}") # Log filtered models
return gr.update(choices=filtered)
# Update the radio list when the search box value changes
model_search_box.change(
fn=filter_models, # Function to filter models
inputs=model_search_box, # Input: search box value
outputs=featured_model_radio # Output: update radio button list
)
print("Model search box change event linked.")
# Update the custom model textbox when a featured model is selected
featured_model_radio.change(
fn=set_custom_model_from_radio, # Function to set custom model
inputs=featured_model_radio, # Input: selected model
outputs=custom_model_box # Output: update custom model textbox
)
print("Featured model radio button change event linked.")
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch()