Nymbo's picture
Update app.py
6a6b98f verified
raw
history blame
25.5 kB
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json
import base64
from PIL import Image
import io
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Function to encode image to base64
def encode_image(image_path):
if not image_path:
print("No image path provided")
return None
try:
print(f"Encoding image from path: {image_path}")
# If it's already a PIL Image
if isinstance(image_path, Image.Image):
image = image_path
else:
# Try to open the image file
image = Image.open(image_path)
# Convert to RGB if image has an alpha channel (RGBA)
if image.mode == 'RGBA':
image = image.convert('RGB')
# Encode to base64
buffered = io.BytesIO()
image.save(buffered, format="JPEG") # Keep JPEG for consistency with image_url
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
print("Image encoded successfully")
return img_str
except Exception as e:
print(f"Error encoding image: {e}")
return None
def respond(
message,
image_files, # Changed parameter name and structure
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
provider,
custom_api_key,
custom_model,
model_search_term, # Retained for function signature consistency if called elsewhere
selected_model # Retained for function signature consistency
):
"""
Core function to stream responses from a language model.
Args:
message (str | list): The user's message, can be text or multimodal content.
image_files (list[str]): List of paths to image files for the current turn.
history (list[tuple[str, str]]): Conversation history.
system_message (str): System prompt for the model.
max_tokens (int): Maximum tokens for the response.
temperature (float): Sampling temperature.
top_p (float): Top-p (nucleus) sampling.
frequency_penalty (float): Frequency penalty.
seed (int): Random seed (-1 for random).
provider (str): Inference provider.
custom_api_key (str): Custom API key.
custom_model (str): Custom model ID.
model_search_term (str): Term for searching models (UI related).
selected_model (str): Model selected from UI list.
Yields:
str: The cumulative response from the model.
"""
print(f"Received message: {message}")
print(f"Received {len(image_files) if image_files else 0} images for current turn")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected provider: {provider}")
print(f"Custom API Key provided: {bool(custom_api_key.strip())}")
print(f"Selected model (custom_model): {custom_model}")
print(f"Model search term: {model_search_term}")
print(f"Selected model from radio: {selected_model}")
# Determine which token to use
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
if custom_api_key.strip() != "":
print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
else:
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
# Initialize the Inference Client with the provider and appropriate token
client = InferenceClient(token=token_to_use, provider=provider)
print(f"Hugging Face Inference Client initialized with {provider} provider.")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Create multimodal content if images are present for the current message
# The 'message' parameter to 'respond' is now the text part of the current turn
# 'image_files' parameter to 'respond' now holds image paths for the current turn
current_turn_content = []
if message and isinstance(message, str) and message.strip():
current_turn_content.append({
"type": "text",
"text": message
})
if image_files and len(image_files) > 0:
for img_path in image_files: # Iterate through paths in image_files
if img_path is not None:
try:
encoded_image = encode_image(img_path) # img_path is already a path
if encoded_image:
current_turn_content.append({
"type": "image_url",
"image_url": {
"url": f"data:image/jpeg;base64,{encoded_image}"
}
})
except Exception as e:
print(f"Error encoding image for current turn: {e}")
# If current_turn_content is empty (e.g. only empty text message), use the raw message
if not current_turn_content and isinstance(message, str):
final_user_content_for_api = message
elif not current_turn_content and not isinstance(message, str): # case where message might be complex type but empty
final_user_content_for_api = "" # or handle as error
else:
final_user_content_for_api = current_turn_content
# Prepare messages in the format expected by the API
messages_for_api = [{"role": "system", "content": system_message}]
print("Initial messages array constructed.")
# Add conversation history to the context
for val in history: # history is list[tuple[str, str]]
user_hist_msg_content = val[0] # This is what user typed or image markdown
assistant_hist_msg = val[1]
# Process user history message (could be text or markdown image path)
if user_hist_msg_content:
# Check if it's an image markdown from history
if isinstance(user_hist_msg_content, str) and user_hist_msg_content.startswith("![Image]("):
hist_img_path = user_hist_msg_content.replace("![Image](", "").replace(")", "")
encoded_hist_image = encode_image(hist_img_path)
if encoded_hist_image:
messages_for_api.append({"role": "user", "content": [
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encoded_hist_image}"}}
]})
else: # if image encoding fails, maybe send a placeholder or skip
messages_for_api.append({"role": "user", "content": "[Image could not be loaded]"})
else: # It's a text message from history
messages_for_api.append({"role": "user", "content": user_hist_msg_content})
print(f"Added user message to API context from history (type: {type(user_hist_msg_content)})")
if assistant_hist_msg:
messages_for_api.append({"role": "assistant", "content": assistant_hist_msg})
print(f"Added assistant message to API context from history: {assistant_hist_msg}")
# Append the latest user message (which now includes images if any for this turn)
messages_for_api.append({"role": "user", "content": final_user_content_for_api})
print(f"Latest user message appended to API context (content type: {type(final_user_content_for_api)})")
# Determine which model to use, prioritizing custom_model if provided
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
print(f"Model selected for inference: {model_to_use}")
# Start with an empty string to build the response as tokens stream in
response_text = ""
print(f"Sending request to {provider} provider.")
# Prepare parameters for the chat completion request
parameters = {
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
}
if seed is not None:
parameters["seed"] = seed
# Use the InferenceClient for making the request
try:
# Create a generator for the streaming response
stream = client.chat_completion(
model=model_to_use,
messages=messages_for_api, # Use the correctly formatted messages
stream=True,
**parameters
)
print("Received tokens: ", end="", flush=True)
# Process the streaming response
for chunk in stream:
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
# Extract the content from the response
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
token_text_chunk = chunk.choices[0].delta.content
if token_text_chunk:
print(token_text_chunk, end="", flush=True)
response_text += token_text_chunk
yield response_text
print()
except Exception as e:
print(f"Error during inference: {e}")
response_text += f"\nError: {str(e)}"
yield response_text
print("Completed response generation.")
# Function to validate provider selection based on BYOK
def validate_provider(api_key, provider):
if not api_key.strip() and provider != "hf-inference":
return gr.update(value="hf-inference")
return gr.update(value=provider)
# GRADIO UI
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
# Create the chatbot component
chatbot = gr.Chatbot(
height=600,
show_copy_button=True,
placeholder="Select a model and begin chatting. Now supports multiple inference providers and multimodal inputs",
layout="panel"
)
print("Chatbot interface created.")
# Multimodal textbox for messages (combines text and file uploads)
msg = gr.MultimodalTextbox(
placeholder="Type a message or upload images...",
show_label=False,
container=False,
scale=12,
file_types=["image"],
file_count="multiple",
sources=["upload"]
)
# Create accordion for settings
with gr.Accordion("Settings", open=False):
# System message
system_message_box = gr.Textbox(
value="You are a helpful AI assistant that can understand images and text.",
placeholder="You are a helpful assistant.",
label="System Prompt"
)
# Generation parameters
with gr.Row():
with gr.Column():
max_tokens_slider = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max tokens"
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P"
)
with gr.Column():
frequency_penalty_slider = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
seed_slider = gr.Slider(
minimum=-1,
maximum=65535,
value=-1,
step=1,
label="Seed (-1 for random)"
)
# Provider selection
providers_list = [
"hf-inference", "cerebras", "together", "sambanova",
"novita", "cohere", "fireworks-ai", "hyperbolic", "nebius",
]
provider_radio = gr.Radio(
choices=providers_list, value="hf-inference", label="Inference Provider",
)
byok_textbox = gr.Textbox(
value="", label="BYOK (Bring Your Own Key)",
info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.",
placeholder="Enter your Hugging Face API token", type="password"
)
custom_model_box = gr.Textbox(
value="", label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
placeholder="meta-llama/Llama-3.3-70B-Instruct"
)
model_search_box = gr.Textbox(
label="Filter Models", placeholder="Search for a featured model...", lines=1
)
models_list = [
"meta-llama/Llama-3.2-11B-Vision-Instruct", "meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct", "meta-llama/Llama-3.0-70B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct", "meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct", "NousResearch/Hermes-3-Llama-3.1-8B",
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", "mistralai/Mistral-Nemo-Instruct-2407",
"mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mistral-7B-Instruct-v0.2", "Qwen/Qwen3-235B-A22B", "Qwen/Qwen3-32B",
"Qwen/Qwen2.5-72B-Instruct", "Qwen/Qwen2.5-3B-Instruct", "Qwen/Qwen2.5-0.5B-Instruct",
"Qwen/QwQ-32B", "Qwen/Qwen2.5-Coder-32B-Instruct", "microsoft/Phi-3.5-mini-instruct",
"microsoft/Phi-3-mini-128k-instruct", "microsoft/Phi-3-mini-4k-instruct",
]
featured_model_radio = gr.Radio(
label="Select a model below", choices=models_list,
value="meta-llama/Llama-3.2-11B-Vision-Instruct", interactive=True
)
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
# MCP Support Information
with gr.Accordion("MCP Support (for AI Tool Use)", open=False):
gr.Markdown("""
### MCP (Model Context Protocol) Enabled
This application's text and image generation capability can be used as a tool by MCP-compatible AI models
(e.g., certain versions of Claude, Cursor, or custom MCP clients like Tiny Agents).
The primary interaction function (`bot`) is exposed as an MCP tool.
Provide the conversation history and other parameters as arguments to the tool.
For multimodal input, ensure the history correctly references image data that the server can access
(Gradio's MCP layer may handle base64 to file conversion if the tool schema indicates file inputs).
**MCP Server URL:**
`https://YOUR_SPACE_NAME-serverless-textgen-hub.hf.space/gradio_api/mcp/sse`
*(Replace `YOUR_SPACE_NAME` with your Hugging Face username or organization if this is a user space,
or the full space name if different. You can find this URL in your browser once the Space is running.)*
**Example MCP Client Configuration (`mcp.json` style):**
```json
{
"servers": [
{
"name": "ServerlessTextGenHubTool",
"transport": {
"type": "sse",
"url": "https://YOUR_SPACE_NAME-serverless-textgen-hub.hf.space/gradio_api/mcp/sse"
}
}
]
}
```
**Note on Tool Schema:** The exact schema of the MCP tool will be determined by Gradio based on the `bot` function's
signature (including type hints) and the Gradio components it interacts with.
Refer to the `/gradio_api/mcp/schema` endpoint of your running application for the precise tool definition.
For image inputs via MCP, clients should ideally send image URLs or base64 encoded data if the tool's schema supports file types.
Gradio's MCP layer attempts to handle file data conversions.
""")
# Chat history state
chat_history = gr.State([]) # Not directly used, chatbot component handles its state internally
# Function to filter models
def filter_models(search_term: str):
print(f"Filtering models with search term: {search_term}")
filtered = [m for m in models_list if search_term.lower() in m.lower()]
print(f"Filtered models: {filtered}")
return gr.update(choices=filtered if filtered else models_list, value=featured_model_radio.value if filtered and featured_model_radio.value in filtered else (filtered[0] if filtered else models_list[0]))
# Function to set custom model from radio
def set_custom_model_from_radio(selected: str):
print(f"Featured model selected: {selected}")
# This function now directly returns the selected model to update custom_model_box
# If custom_model_box is meant to override, this keeps them in sync until user types in custom_model_box
return selected
# Function for the chat interface (user's turn)
def user(user_message_input: dict, history: list[list[str | None]]):
print(f"User input (raw from MultimodalTextbox): {user_message_input}")
text_content = user_message_input.get("text", "").strip()
files = user_message_input.get("files", []) # List of temp file paths
print(f"Parsed text content: '{text_content}'")
print(f"Parsed files: {files}")
# Append text message to history if present
if text_content:
history.append([text_content, None])
print(f"Appended text to history: {text_content}")
# Append image messages to history
if files:
for file_path in files:
if file_path and isinstance(file_path, str): # file_path is a temp path from Gradio
# Embed image as markdown link in history for display
# The actual file path is used by `respond` via `bot`
history.append([f"![Image]({file_path})", None])
print(f"Appended image to history: {file_path}")
# If neither text nor files, don't add an empty turn
if not text_content and not files:
print("Empty input, no change to history.")
return history # Return current history as is
return history
# Define bot response function
def bot(
history: list[list[str | None]], # Type hint for history
system_msg: str,
max_tokens: int,
temperature: float,
top_p: float,
freq_penalty: float,
seed: int,
provider: str,
api_key: str,
custom_model: str,
# model_search_term: str, # This argument comes from model_search_box
selected_model: str # This argument comes from featured_model_radio
):
"""
Processes user input from the chat history, calls the language model via the 'respond'
function, and streams the bot's response back to update the chat history.
This function is intended to be exposed as an MCP tool.
Args:
history (list[list[str | None]]): The conversation history.
Each item is [user_message, bot_message].
User messages can be text or markdown image paths like "![Image](/tmp/path.jpg)".
system_msg (str): The system prompt.
max_tokens (int): Maximum number of tokens to generate.
temperature (float): Sampling temperature for generation.
top_p (float): Top-P (nucleus) sampling probability.
freq_penalty (float): Frequency penalty for generation.
seed (int): Random seed for generation (-1 for random).
provider (str): The inference provider to use.
api_key (str): Custom API key, if provided by the user.
custom_model (str): Custom model path/ID. If empty, selected_model is used.
selected_model (str): The model selected from the featured list.
Yields:
list[list[str | None]]: The updated chat history with the bot's streaming response.
"""
print(f"Bot function called. History: {history}")
if not history or history[-1][0] is None: # Check if last user message is None
print("No user message in the last history turn to process.")
# yield history # removed to avoid issues with Gradio expecting a specific sequence
return # Or raise an error, or handle appropriately
# The last user message is history[-1][0]
# The bot's response will go into history[-1][1]
user_turn_content = history[-1][0]
current_turn_text_message = ""
current_turn_image_paths = []
# Check if the last user message in history is an image markdown
if isinstance(user_turn_content, str) and user_turn_content.startswith("![Image]("):
# This is an image message
img_path = user_turn_content.replace("![Image](", "").replace(")", "")
current_turn_image_paths.append(img_path)
# Check if there was a text message immediately preceding this image in the same "turn"
# This requires looking at how `user` function structures history.
# `user` adds text and images as separate entries in history.
# So, if history[-1][0] is an image, history[-2][0] might be related text IF it was part of the same multimodal input.
# This logic becomes complex. Simpler: assume each history entry is distinct.
# For MCP, it's better if the client structures the call to `bot` clearly.
print(f"Processing image from history: {img_path}")
elif isinstance(user_turn_content, str):
# This is a text message
current_turn_text_message = user_turn_content
print(f"Processing text from history: {current_turn_text_message}")
else:
print(f"Unexpected content in history user turn: {user_turn_content}")
# yield history # removed
return
history[-1][1] = "" # Initialize bot response field for the current turn
# Call the 'respond' function.
# History for 'respond' should be prior turns, not including the current user message being processed.
history_for_respond = history[:-1]
for response_chunk in respond(
message=current_turn_text_message, # Text part of current turn
image_files=current_turn_image_paths, # Image paths of current turn
history=history_for_respond, # History up to the previous turn
system_message=system_msg,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
frequency_penalty=freq_penalty,
seed=seed,
provider=provider,
custom_api_key=api_key,
custom_model=custom_model,
model_search_term="", # Not directly used by respond's core logic here
selected_model=selected_model
):
history[-1][1] = response_chunk # Update bot response in the current turn
yield history
# Event handlers
# The parameters to `bot` must match the order of inputs list
msg.submit(
user,
[msg, chatbot],
[chatbot],
queue=False
).then(
bot,
[chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
# model_search_box, # Removed from bot inputs as it's UI only
featured_model_radio],
[chatbot]
).then(
lambda: {"text": "", "files": []},
None,
[msg]
)
model_search_box.change(
fn=filter_models, inputs=model_search_box, outputs=featured_model_radio
)
print("Model search box change event linked.")
featured_model_radio.change(
fn=set_custom_model_from_radio, inputs=featured_model_radio, outputs=custom_model_box
)
print("Featured model radio button change event linked.")
byok_textbox.change(
fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio
)
print("BYOK textbox change event linked.")
provider_radio.change(
fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio
)
print("Provider radio button change event linked.")
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
# Added mcp_server=True
demo.launch(show_api=True, mcp_server=True)