Nymbo's picture
Update app.py
050af7a verified
raw
history blame
3.25 kB
import gradio as gr
from openai import OpenAI
import os
# Load the Hugging Face access token from environment variables
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with Hugging Face's serverless API
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
top_k,
seed,
):
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency penalty: {frequency_penalty}, Top-K: {top_k}, Seed: {seed}")
# Construct the messages list for the conversation context
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
print(f"Added user message to context: {val[0]}")
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
print(f"Added assistant message to context: {val[1]}")
messages.append({"role": "user", "content": message})
response = ""
print("Sending request to OpenAI API.")
for message in client.chat.completions.create(
model="meta-llama/Llama-3.3-70B-Instruct",
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
top_k=top_k,
seed=seed,
messages=messages,
):
token = message.choices[0].delta.content
print(f"Received token: {token}")
response += token
yield response
print("Completed response generation.")
# Initialize the chatbot interface
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")
# Create the Gradio interface with additional inputs for the new parameters
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="", label="System message"),
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P",
),
gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty",
),
gr.Slider(
minimum=1,
maximum=100,
value=50,
step=1,
label="Top-K",
),
gr.Slider(
minimum=-1,
maximum=2**31 - 1,
value=-1,
step=1,
label="Seed",
),
],
fill_height=True,
chatbot=chatbot,
theme="Nymbo/Nymbo_Theme",
)
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch()