Spaces:
Build error
Build error
File size: 10,078 Bytes
038f313 4c18bfc 038f313 880ced6 e13eb1b 038f313 e13eb1b 038f313 e13eb1b 038f313 e13eb1b 69b4a5f 038f313 3a64d68 98674ca 8696822 e7683ca 038f313 e13eb1b 52ad57a 10ffb1d e7683ca e13eb1b 10ffb1d f7c4208 86297f5 52ad57a 98674ca e7683ca f7c4208 52ad57a 038f313 e7683ca e13eb1b 10ffb1d f7c4208 e13eb1b 86297f5 e13eb1b 038f313 10ffb1d 038f313 b56d11c f7c4208 e7683ca 542c2ac e13eb1b f7c4208 e7683ca d3123eb e7683ca 8696822 e7683ca 10ffb1d e7683ca 10ffb1d e7683ca 10ffb1d e7683ca 10ffb1d e7683ca 10ffb1d e7683ca 10ffb1d e7683ca 10ffb1d e7683ca 10ffb1d e7683ca 10ffb1d e7683ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 |
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model,
selected_featured_model
):
"""
This function handles the chatbot response. It takes in:
- message: the user's new message
- history: the list of previous messages, each as a tuple (user_msg, assistant_msg)
- system_message: the system prompt
- max_tokens: the maximum number of tokens to generate in the response
- temperature: sampling temperature
- top_p: top-p (nucleus) sampling
- frequency_penalty: penalize repeated tokens in the output
- seed: a fixed seed for reproducibility; -1 will mean 'random'
- custom_model: the user-provided custom model name (if any)
- selected_featured_model: the model selected from featured models
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Custom model: {custom_model}")
print(f"Selected featured model: {selected_featured_model}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Determine which model to use: either custom_model or selected featured model
if custom_model.strip() != "":
model_to_use = custom_model.strip()
print(f"Using Custom Model: {model_to_use}")
else:
model_to_use = selected_featured_model
print(f"Using Featured Model: {model_to_use}")
# Construct the messages array required by the API
messages = [{"role": "system", "content": system_message}]
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
# Start with an empty string to build the response as tokens stream in
response = ""
print("Sending request to OpenAI API.")
try:
# Make the streaming request to the HF Inference API via openai-like client
for message_chunk in client.chat.completions.create(
model=model_to_use, # Use either the user-provided custom model or selected featured model
max_tokens=max_tokens,
stream=True, # Stream the response
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response += token_text
# Yield the partial response to Gradio so it can display in real-time
yield response
except Exception as e:
print(f"Error during API call: {e}")
yield f"An error occurred: {e}"
print("Completed response generation.")
# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")
# Placeholder featured models list
FEATURED_MODELS_LIST = [
"meta-llama/Llama-3.1-8B-Instruct",
"microsoft/Phi-3.5-mini-instruct",
"mistralai/Mistral-7B-Instruct-v0.3",
"Qwen/Qwen2.5-72B-Instruct",
]
# Define the Gradio Blocks interface
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
gr.Markdown("# Serverless-TextGen-Hub 📝🤖")
gr.Markdown(
"""
Welcome to the **Serverless-TextGen-Hub**! Chat with your favorite models seamlessly.
"""
)
with gr.Row():
# Chatbot component
chatbot_component = gr.Chatbot(height=600)
with gr.Row():
# System message input
system_message = gr.Textbox(
value="You are a helpful assistant.",
label="System Message",
placeholder="Enter system message here...",
lines=2,
)
with gr.Row():
# User message input
user_message = gr.Textbox(
label="Your Message",
placeholder="Type your message here...",
lines=2,
)
# Run button
run_button = gr.Button("Send", variant="primary")
with gr.Row():
# Additional settings
with gr.Column(scale=1):
max_tokens = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max New Tokens",
)
temperature = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature",
)
top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P",
)
frequency_penalty = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty",
)
seed = gr.Slider(
minimum=-1,
maximum=65535, # Arbitrary upper limit for demonstration
value=-1,
step=1,
label="Seed (-1 for random)",
)
custom_model = gr.Textbox(
value="",
label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. This will override the selected featured model if not empty.",
placeholder="e.g., meta-llama/Llama-3.3-70B-Instruct",
)
with gr.Accordion("Featured Models", open=True):
with gr.Column():
model_search = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1,
)
featured_model = gr.Radio(
label="Select a model below",
value=FEATURED_MODELS_LIST[0],
choices=FEATURED_MODELS_LIST,
interactive=True,
)
# Function to filter featured models based on search input
def filter_featured_models(search_term):
if not search_term:
return gr.update(choices=FEATURED_MODELS_LIST, value=FEATURED_MODELS_LIST[0])
filtered = [model for model in FEATURED_MODELS_LIST if search_term.lower() in model.lower()]
if not filtered:
return gr.update(choices=[], value=None)
return gr.update(choices=filtered, value=filtered[0])
# Update featured_model choices based on search
model_search.change(
fn=filter_featured_models,
inputs=model_search,
outputs=featured_model,
)
# Function to handle the chatbot response
def handle_response(message, history, system_msg, max_tok, temp, tp, freq_pen, sd, custom_mod, selected_feat_mod):
# Append user message to history
history = history or []
history.append((message, None))
# Generate response using the respond function
response = respond(
message=message,
history=history,
system_message=system_msg,
max_tokens=max_tok,
temperature=temp,
top_p=tp,
frequency_penalty=freq_pen,
seed=sd,
custom_model=custom_mod,
selected_featured_model=selected_feat_mod,
)
return response, history + [(message, response)]
# Handle button click
run_button.click(
fn=handle_response,
inputs=[
user_message,
chatbot_component, # history
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model,
featured_model,
],
outputs=[
chatbot_component,
chatbot_component, # Updated history
],
)
# Allow pressing Enter to send the message
user_message.submit(
fn=handle_response,
inputs=[
user_message,
chatbot_component, # history
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model,
featured_model,
],
outputs=[
chatbot_component,
chatbot_component, # Updated history
],
)
# Custom CSS to enhance the UI
demo.load(lambda: None, None, None, _js="""
() => {
const style = document.createElement('style');
style.innerHTML = `
footer {visibility: hidden !important;}
.gradio-container {background-color: #f9f9f9;}
`;
document.head.appendChild(style);
}
""")
print("Launching Gradio interface...") # Debug log
# Launch the Gradio interface without showing the API or sharing externally
demo.launch(show_api=False, share=False) |