File size: 22,370 Bytes
038f313
1cee504
c5a20a4
ea82e64
75bf974
 
 
038f313
db00df1
2d6eaa5
c6bdd15
75bf974
70d58c7
 
 
75bf974
 
6a6b98f
70d58c7
8f939dc
 
70d58c7
 
 
8f939dc
70d58c7
 
8f939dc
70d58c7
 
 
8f939dc
70d58c7
57cb471
70d58c7
 
 
 
 
 
75bf974
8f939dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57cb471
8f939dc
 
 
 
 
 
 
 
 
 
 
57cb471
8f939dc
57cb471
8f939dc
 
57cb471
038f313
27c8b8d
57cb471
27c8b8d
 
038f313
 
 
3a64d68
98674ca
9e12544
75bf974
9e12544
57cb471
 
038f313
0ef95ea
57cb471
2d6eaa5
0ef95ea
 
 
9e12544
75bf974
9e12544
d92e5cd
 
f7c4208
8f939dc
9e12544
 
8eb1697
 
 
 
 
8f939dc
9e12544
ba0614b
 
8f939dc
0ef95ea
 
038f313
8f939dc
45b3867
8f939dc
57cb471
8f939dc
 
57cb471
8f939dc
 
 
 
57cb471
8f939dc
57cb471
 
8f939dc
4c304f3
57cb471
4c304f3
57cb471
4c304f3
8f939dc
 
 
4c304f3
 
57cb471
4c304f3
8f939dc
57cb471
4c304f3
8f939dc
57cb471
2d6eaa5
901bafe
8f939dc
57cb471
 
 
 
8f939dc
57cb471
8f939dc
57cb471
8f939dc
 
 
 
 
57cb471
8f939dc
57cb471
 
 
 
 
 
8f939dc
 
 
57cb471
 
 
 
 
 
8f939dc
57cb471
 
6a6b98f
57cb471
 
 
6a6b98f
8f939dc
57cb471
 
27c8b8d
8f939dc
d92e5cd
5b8ad4f
0ef95ea
8f939dc
57cb471
1cee504
 
8f939dc
1cee504
3b18f78
1cee504
 
 
 
2d6eaa5
1cee504
 
 
8f939dc
1cee504
8f939dc
1cee504
5b8ad4f
57cb471
1cee504
75bf974
1cee504
2d6eaa5
23119eb
 
8f939dc
1cee504
 
8f939dc
1cee504
57cb471
 
 
 
 
23119eb
 
1cee504
 
57cb471
 
1cee504
0ef95ea
901bafe
8f939dc
d2ae72a
 
 
 
 
8f939dc
 
 
 
75bf974
 
7c1212e
75bf974
 
 
 
8f939dc
70d58c7
 
 
 
 
 
 
 
 
8f939dc
 
57cb471
8f939dc
75bf974
8f939dc
57fd5c0
 
 
 
 
75bf974
8f939dc
57fd5c0
 
8f939dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fd5c0
8f939dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fd5c0
8f939dc
57fd5c0
8f939dc
 
 
 
 
 
 
 
 
57fd5c0
 
8f939dc
 
 
 
 
 
 
 
 
 
 
 
 
 
57fd5c0
8f939dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fd5c0
8f939dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57fd5c0
 
8f939dc
 
 
 
 
 
 
06cdbf8
7c1212e
8f939dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
57cb471
75bf974
8f939dc
57cb471
75bf974
 
 
57cb471
d92e5cd
8f939dc
57cb471
75bf974
 
b0cbd1c
8f939dc
57cb471
 
8f939dc
 
57cb471
 
 
75bf974
8f939dc
57cb471
 
75bf974
57cb471
 
75bf974
8f939dc
57cb471
 
 
 
8f939dc
57cb471
8f939dc
57cb471
 
 
 
8f939dc
4c304f3
57cb471
 
6a6b98f
 
57cb471
 
8f939dc
57cb471
 
 
75bf974
8f939dc
57cb471
 
 
 
6a6b98f
57cb471
 
7c1212e
57cb471
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8f939dc
 
 
 
 
 
 
 
 
 
 
 
 
 
57cb471
 
 
 
 
8f939dc
 
 
 
 
 
 
 
 
 
 
 
 
 
57cb471
 
 
 
8f939dc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75bf974
8f939dc
 
 
 
 
a9862a1
fdab9dd
8f939dc
 
 
 
 
a9862a1
8f939dc
 
 
 
 
 
a9862a1
9e12544
8f939dc
 
 
 
 
a9862a1
 
 
769901b
77298b9
a9862a1
8f939dc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json
import base64
from PIL import Image
import io

ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

# Function to encode image to base64
def encode_image(image_path):
    if not image_path:
        print("No image path provided")
        return None
    
    try:
        print(f"Encoding image from path: {image_path}")
        
        # If it's already a PIL Image
        if isinstance(image_path, Image.Image):
            image = image_path
        else:
            # Try to open the image file
            image = Image.open(image_path)
        
        # Convert to RGB if image has an alpha channel (RGBA)
        if image.mode == 'RGBA':
            image = image.convert('RGB')
        
        # Encode to base64
        buffered = io.BytesIO()
        image.save(buffered, format="JPEG")
        img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
        print("Image encoded successfully")
        return img_str
    except Exception as e:
        print(f"Error encoding image: {e}")
        return None

def text_generation(
    message: str,
    system_message: str = "You are a helpful AI assistant.",
    max_tokens: int = 512,
    temperature: float = 0.7,
    top_p: float = 0.95,
    frequency_penalty: float = 0.0,
    provider: str = "hf-inference",
    model: str = "meta-llama/Llama-3.2-11B-Vision-Instruct"
) -> str:
    """
    Generate text based on the input message using the specified model and provider.

    Args:
        message (str): The input text prompt.
        system_message (str): The system prompt to guide the AI's behavior.
        max_tokens (int): Maximum number of tokens to generate.
        temperature (float): Sampling temperature for randomness.
        top_p (float): Top-p sampling parameter.
        frequency_penalty (float): Penalty for frequent tokens.
        provider (str): Inference provider (e.g., 'hf-inference').
        model (str): Model identifier (e.g., 'meta-llama/Llama-3.2-11B-Vision-Instruct').

    Returns:
        str: The generated text response.
    """
    print(f"Text generation called with message: {message}")
    
    # Initialize the Inference Client
    client = InferenceClient(token=ACCESS_TOKEN, provider=provider)
    print(f"Inference Client initialized with {provider} provider.")

    # Prepare messages
    messages = [
        {"role": "system", "content": system_message},
        {"role": "user", "content": message}
    ]
    
    # Prepare parameters
    parameters = {
        "max_tokens": max_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "frequency_penalty": frequency_penalty,
    }

    try:
        # Perform chat completion (non-streaming for MCP simplicity)
        response = client.chat_completion(
            model=model,
            messages=messages,
            stream=False,
            **parameters
        )
        if hasattr(response, 'choices') and len(response.choices) > 0:
            generated_text = response.choices[0].message.content
            print(f"Generated text: {generated_text}")
            return generated_text
        else:
            raise ValueError("No valid response received from the model.")
    except Exception as e:
        print(f"Error during text generation: {e}")
        return f"Error: {str(e)}"

def respond(
    message,
    image_files,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    provider,
    custom_api_key,
    custom_model,    
    model_search_term,
    selected_model
):
    print(f"Received message: {message}")
    print(f"Received {len(image_files) if image_files else 0} images")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
    print(f"Selected provider: {provider}")         
    print(f"Custom API Key provided: {bool(custom_api_key.strip())}")
    print(f"Selected model (custom_model): {custom_model}")  
    print(f"Model search term: {model_search_term}")
    print(f"Selected model from radio: {selected_model}")

    # Determine which token to use
    token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
    
    if custom_api_key.strip() != "":
        print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
    else:
        print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
    
    # Initialize the Inference Client with the provider and appropriate token
    client = InferenceClient(token=token_to_use, provider=provider)
    print(f"Hugging Face Inference Client initialized with {provider} provider.")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None

    # Create multimodal content if images are present
    if image_files and len(image_files) > 0:
        # Process the user message to include images
        user_content = []
        
        # Add text part if there is any
        if message and message.strip():
            user_content.append({
                "type": "text",
                "text": message
            })
        
        # Add image parts
        for img in image_files:
            if img is not None:
                # Get raw image data from path
                try:
                    encoded_image = encode_image(img)
                    if encoded_image:
                        user_content.append({
                            "type": "image_url",
                            "image_url": {
                                "url": f"data:image/jpeg;base64,{encoded_image}"
                            }
                        })
                except Exception as e:
                    print(f"Error encoding image: {e}")
    else:
        # Text-only message
        user_content = message

    # Prepare messages in the format expected by the API
    messages = [{"role": "system", "content": system_message}]
    print("Initial messages array constructed.")

    # Add conversation history to the context
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        if user_part:
            # Handle both text-only and multimodal messages in history
            if isinstance(user_part, tuple) and len(user_part) == 2:
                # This is a multimodal message with text and images
                history_content = []
                if user_part[0]:  # Text
                    history_content.append({
                        "type": "text",
                        "text": user_part[0]
                    })
                
                for img in user_part[1]:  # Images
                    if img:
                        try:
                            encoded_img = encode_image(img)
                            if encoded_img:
                                history_content.append({
                                    "type": "image_url",
                                    "image_url": {
                                        "url": f"data:image/jpeg;base64,{encoded_img}"
                                    }
                                })
                        except Exception as e:
                            print(f"Error encoding history image: {e}")
                
                messages.append({"role": "user", "content": history_content})
            else:
                # Regular text message
                messages.append({"role": "user", "content": user_part})
            print(f"Added user message to context (type: {type(user_part)})")
        
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})
            print(f"Added assistant message to context: {assistant_part}")

    # Append the latest user message
    messages.append({"role": "user", "content": user_content})
    print(f"Latest user message appended (content type: {type(user_content)})")

    # Determine which model to use, prioritizing custom_model if provided
    model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
    print(f"Model selected for inference: {model_to_use}")

    # Start with an empty string to build the response as tokens stream in
    response = ""
    print(f"Sending request to {provider} provider.")

    # Prepare parameters for the chat completion request
    parameters = {
        "max_tokens": max_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "frequency_penalty": frequency_penalty,
    }
    
    if seed is not None:
        parameters["seed"] = seed

    # Use the InferenceClient for making the request
    try:
        # Create a generator for the streaming response
        stream = client.chat_completion(
            model=model_to_use,
            messages=messages,
            stream=True,
            **parameters
        )
        
        print("Received tokens: ", end="", flush=True)
        
        # Process the streaming response
        for chunk in stream:
            if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
                # Extract the content from the response
                if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
                    token_text = chunk.choices[0].delta.content
                    if token_text:
                        print(token_text, end="", flush=True)
                        response += token_text
                        yield response
        
        print()
    except Exception as e:
        print(f"Error during inference: {e}")
        response += f"\nError: {str(e)}"
        yield response

    print("Completed response generation.")

# Function to validate provider selection based on BYOK
def validate_provider(api_key, provider):
    if not api_key.strip() and provider != "hf-inference":
        return gr.update(value="hf-inference")
    return gr.update(value=provider)

# GRADIO UI
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
    # Create the chatbot component
    chatbot = gr.Chatbot(
        height=600, 
        show_copy_button=True, 
        placeholder="Select a model and begin chatting. Now supports multiple inference providers and multimodal inputs",
        layout="panel"
    )
    print("Chatbot interface created.")
    
    # Multimodal textbox for messages (combines text and file uploads)
    msg = gr.MultimodalTextbox(
        placeholder="Type a message or upload images...",
        show_label=False,
        container=False,
        scale=12,
        file_types=["image"],
        file_count="multiple",
        sources=["upload"]
    )
    
    # Note: We're removing the separate submit button since MultimodalTextbox has its own

    # Create accordion for settings
    with gr.Accordion("Settings", open=False):
        # System message
        system_message_box = gr.Textbox(
            value="You are a helpful AI assistant that can understand images and text.", 
            placeholder="You are a helpful assistant.",
            label="System Prompt"
        )
        
        # Generation parameters
        with gr.Row():
            with gr.Column():
                max_tokens_slider = gr.Slider(
                    minimum=1,
                    maximum=4096,
                    value=512,
                    step=1,
                    label="Max tokens"
                )
                
                temperature_slider = gr.Slider(
                    minimum=0.1,
                    maximum=4.0,
                    value=0.7,
                    step=0.1,
                    label="Temperature"
                )
                
                top_p_slider = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.95,
                    step=0.05,
                    label="Top-P"
                )
                
            with gr.Column():
                frequency_penalty_slider = gr.Slider(
                    minimum=-2.0,
                    maximum=2.0,
                    value=0.0,
                    step=0.1,
                    label="Frequency Penalty"
                )
                
                seed_slider = gr.Slider(
                    minimum=-1,
                    maximum=65535,
                    value=-1,
                    step=1,
                    label="Seed (-1 for random)"
                )
        
        # Provider selection
        providers_list = [
            "hf-inference",  # Default Hugging Face Inference
            "cerebras",      # Cerebras provider
            "together",      # Together AI
            "sambanova",     # SambaNova
            "novita",        # Novita AI
            "cohere",        # Cohere
            "fireworks-ai",  # Fireworks AI
            "hyperbolic",    # Hyperbolic
            "nebius",        # Nebius
        ]
        
        provider_radio = gr.Radio(
            choices=providers_list,
            value="hf-inference",
            label="Inference Provider",
        )
        
        # New BYOK textbox
        byok_textbox = gr.Textbox(
            value="",
            label="BYOK (Bring Your Own Key)",
            info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.",
            placeholder="Enter your Hugging Face API token",
            type="password"  # Hide the API key for security
        )
        
        # Custom model box
        custom_model_box = gr.Textbox(
            value="",
            label="Custom Model",
            info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
            placeholder="meta-llama/Llama-3.3-70B-Instruct"
        )
        
        # Model search
        model_search_box = gr.Textbox(
            label="Filter Models",
            placeholder="Search for a featured model...",
            lines=1
        )
        
        # Featured models list
        models_list = [
            "meta-llama/Llama-3.2-11B-Vision-Instruct",
            "meta-llama/Llama-3.3-70B-Instruct",
            "meta-llama/Llama-3.1-70B-Instruct",
            "meta-llama/Llama-3.0-70B-Instruct",
            "meta-llama/Llama-3.2-3B-Instruct",
            "meta-llama/Llama-3.2-1B-Instruct",
            "meta-llama/Llama-3.1-8B-Instruct",
            "NousResearch/Hermes-3-Llama-3.1-8B",
            "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
            "mistralai/Mistral-Nemo-Instruct-2407",
            "mistralai/Mixtral-8x7B-Instruct-v0.1",
            "mistralai/Mistral-7B-Instruct-v0.3",
            "mistralai/Mistral-7B-Instruct-v0.2",
            "Qwen/Qwen3-235B-A22B",
            "Qwen/Qwen3-32B",
            "Qwen/Qwen2.5-72B-Instruct",
            "Qwen/Qwen2.5-3B-Instruct",
            "Qwen/Qwen2.5-0.5B-Instruct",
            "Qwen/QwQ-32B",
            "Qwen/Qwen2.5-Coder-32B-Instruct",
            "microsoft/Phi-3.5-mini-instruct",
            "microsoft/Phi-3-mini-128k-instruct",
            "microsoft/Phi-3-mini-4k-instruct",
        ]

        featured_model_radio = gr.Radio(
            label="Select a model below",
            choices=models_list,
            value="meta-llama/Llama-3.2-11B-Vision-Instruct",
            interactive=True
        )
        
        gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")

    # Add MCP Support Section
    with gr.Accordion("MCP Support (for LLMs)", open=False):
        gr.Markdown("""
        ### MCP Support
        
        This app supports the Model Context Protocol (MCP), allowing Large Language Models like Claude Desktop to use it as a text generation tool.
        
        To use this app with an MCP client, add the following configuration:
        
        ```json
        {
          "mcpServers": {
            "textGen": {
              "url": "https://YOUR_USERNAME-serverless-textgen-hub.hf.space/gradio_api/mcp/sse"
            }
          }
        }
        ```
        
        Replace `YOUR_USERNAME` with your actual Hugging Face username.
        """)

    # Chat history state
    chat_history = gr.State([])
    
    # Function to filter models
    def filter_models(search_term):
        print(f"Filtering models with search term: {search_term}")
        filtered = [m for m in models_list if search_term.lower() in m.lower()]
        print(f"Filtered models: {filtered}")
        return gr.update(choices=filtered)

    # Function to set custom model from radio
    def set_custom_model_from_radio(selected):
        print(f"Featured model selected: {selected}")
        return selected

    # Function for the chat interface
    def user(user_message, history):
        print(f"User message received: {user_message}")
        
        # Skip if message is empty (no text and no files)
        if not user_message or (not user_message.get("text") and not user_message.get("files")):
            print("Empty message, skipping")
            return history
        
        # Prepare multimodal message format
        text_content = user_message.get("text", "").strip()
        files = user_message.get("files", [])
        
        print(f"Text content: {text_content}")
        print(f"Files: {files}")
        
        # If both text and files are empty, skip
        if not text_content and not files:
            print("No content to display")
            return history
        
        # Add message with images to history
        if files and len(files) > 0:
            # Add text message first if it exists
            if text_content:
                print(f"Adding text message: {text_content}")
                history.append([text_content, None])
            
            # Then add each image file separately
            for file_path in files:
                if file_path and isinstance(file_path, str):
                    print(f"Adding image: {file_path}")
                    history.append([f"![Image]({file_path})", None])
            
            return history
        else:
            # For text-only messages
            print(f"Adding text-only message: {text_content}")
            history.append([text_content, None])
            return history
    
    # Define bot response function
    def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model):
        if not history or len(history) == 0:
            print("No history to process")
            return history
        
        user_message = history[-1][0]
        print(f"Processing user message: {user_message}")
        
        is_image = False
        image_path = None
        text_content = user_message
        
        if isinstance(user_message, str) and user_message.startswith("![Image]("):
            is_image = True
            image_path = user_message.replace("![Image](", "").replace(")", "")
            print(f"Image detected: {image_path}")
            text_content = ""
        
        text_context = ""
        if is_image and len(history) > 1:
            prev_message = history[-2][0]
            if isinstance(prev_message, str) and not prev_message.startswith("![Image]("):
                text_context = prev_message
                print(f"Using text context from previous message: {text_context}")
        
        history[-1][1] = ""
        
        if is_image:
            for response in respond(
                text_context,
                [image_path],
                history[:-1],
                system_msg,
                max_tokens,
                temperature,
                top_p,
                freq_penalty,
                seed,
                provider,
                api_key,
                custom_model,
                search_term,
                selected_model
            ):
                history[-1][1] = response
                yield history
        else:
            for response in respond(
                text_content,
                None,
                history[:-1],
                system_msg,
                max_tokens,
                temperature,
                top_p,
                freq_penalty,
                seed,
                provider,
                api_key,
                custom_model,
                search_term,
                selected_model
            ):
                history[-1][1] = response
                yield history

    # Event handlers
    msg.submit(
        user,
        [msg, chatbot],
        [chatbot],
        queue=False
    ).then(
        bot,
        [chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider, 
         frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box, 
         model_search_box, featured_model_radio],
        [chatbot]
    ).then(
        lambda: {"text": "", "files": []},
        None,
        [msg]
    )
    
    model_search_box.change(
        fn=filter_models,
        inputs=model_search_box,
        outputs=featured_model_radio
    )
    print("Model search box change event linked.")

    featured_model_radio.change(
        fn=set_custom_model_from_radio,
        inputs=featured_model_radio,
        outputs=custom_model_box
    )
    print("Featured model radio button change event linked.")

    byok_textbox.change(
        fn=validate_provider,
        inputs=[byok_textbox, provider_radio],
        outputs=provider_radio
    )
    print("BYOK textbox change event linked.")

    provider_radio.change(
        fn=validate_provider,
        inputs=[byok_textbox, provider_radio],
        outputs=provider_radio
    )
    print("Provider radio button change event linked.")

print("Gradio interface initialized.")

if __name__ == "__main__":
    print("Launching the demo application.")
    demo.launch(show_api=True, mcp_server=True)