Spaces:
Running
Running
File size: 33,620 Bytes
8d2c697 cb919f0 8d2c697 c5a20a4 ea82e64 cb919f0 8d2c697 cb919f0 717cd1f cb919f0 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 8d2c697 cb919f0 717cd1f a7fbaae 717cd1f a7fbaae cb919f0 717cd1f 8d2c697 717cd1f a7fbaae 717cd1f 81286e1 717cd1f 109f11f a7fbaae 8d2c697 a7fbaae 8d2c697 717cd1f 81286e1 8d2c697 717cd1f 8d2c697 81286e1 8d2c697 81286e1 8d2c697 717cd1f 8d2c697 a7fbaae 8d2c697 717cd1f 8d2c697 a7fbaae 6f66243 a7fbaae 81286e1 717cd1f a7fbaae cb919f0 81286e1 8d2c697 cb919f0 717cd1f 81286e1 a7fbaae 8d2c697 a7fbaae 717cd1f a7fbaae 717cd1f a7fbaae 717cd1f 8d2c697 717cd1f 81286e1 a7fbaae cb919f0 dc27384 a7fbaae 8d2c697 a7fbaae dc27384 a7fbaae 8d2c697 a7fbaae 8d2c697 a7fbaae 8d2c697 a7fbaae 6f66243 a7fbaae 81286e1 a7fbaae 717cd1f a7fbaae 8d2c697 a7fbaae 717cd1f a7fbaae dc27384 a7fbaae 717cd1f a7fbaae dc27384 8d2c697 a7fbaae 8d2c697 dc27384 a7fbaae 8d2c697 717cd1f 8d2c697 717cd1f a7fbaae 8d2c697 a7fbaae 8d2c697 a7fbaae 8d2c697 717cd1f 8d2c697 717cd1f 8d2c697 a7fbaae 717cd1f a7fbaae 717cd1f a7fbaae 717cd1f a7fbaae 717cd1f a7fbaae dc27384 8d2c697 a7fbaae 8d2c697 a7fbaae 8d2c697 a7fbaae dc27384 a7fbaae cb919f0 717cd1f cb919f0 717cd1f 8d2c697 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 |
```text
File: app.py
``````python
import gradio as gr
from huggingface_hub import InferenceClient as HubInferenceClient # Renamed to avoid conflict
import os
import json
import base64
from PIL import Image
import io
# Smolagents imports
from smolagents import CodeAgent, Tool, LiteLLMModel, OpenAIServerModel, TransformersModel, InferenceClientModel as SmolInferenceClientModel
from smolagents.gradio_ui import stream_to_gradio
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Function to encode image to base64
def encode_image(image_path):
if not image_path:
print("No image path provided")
return None
try:
print(f"Encoding image from path: {image_path}")
# If it's already a PIL Image
if isinstance(image_path, Image.Image):
image = image_path
else:
# Try to open the image file
image = Image.open(image_path)
# Convert to RGB if image has an alpha channel (RGBA)
if image.mode == 'RGBA':
image = image.convert('RGB')
# Encode to base64
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
print("Image encoded successfully")
return img_str
except Exception as e:
print(f"Error encoding image: {e}")
return None
# --- Smolagents Tool Definition ---
try:
image_generation_tool = Tool.from_space(
"black-forest-labs/FLUX.1-schnell",
name="image_generator",
description="Generates an image from a textual prompt. Use this tool if the user asks to generate, create, or draw an image.",
token=ACCESS_TOKEN # Pass token if the space might be private or has rate limits
)
print("Image generation tool loaded successfully.")
SMOLAGENTS_TOOLS = [image_generation_tool]
except Exception as e:
print(f"Error loading image generation tool: {e}. Proceeding without it.")
SMOLAGENTS_TOOLS = []
def respond(
message,
image_files, # Changed parameter name and structure
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
provider,
custom_api_key,
custom_model,
model_search_term,
selected_model
):
print(f"Received message: {message}")
print(f"Received {len(image_files) if image_files else 0} images")
# print(f"History: {history}") # Can be very verbose
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected provider: {provider}")
print(f"Custom API Key provided: {bool(custom_api_key.strip())}")
print(f"Selected model (custom_model): {custom_model}")
print(f"Model search term: {model_search_term}")
print(f"Selected model from radio: {selected_model}")
# Determine which token to use
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
if custom_api_key.strip() != "":
print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
else:
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
# Determine which model to use, prioritizing custom_model if provided
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
print(f"Model selected for LLM: {model_to_use}")
# Prepare parameters for the LLM
llm_parameters = {
"max_tokens": max_tokens, # For LiteLLMModel, OpenAIServerModel
"max_new_tokens": max_tokens, # For TransformersModel, InferenceClientModel
"temperature": temperature,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
}
if seed != -1:
llm_parameters["seed"] = seed
# Initialize the smolagents Model
# For simplicity, we'll use InferenceClientModel if provider is hf-inference,
# otherwise LiteLLMModel which supports many providers.
# You might want to add more sophisticated logic to select the right smolagents Model class.
if provider == "hf-inference" or provider is None or provider == "": # provider can be None if custom_model is a URL
smol_model = SmolInferenceClientModel(
model_id=model_to_use,
token=token_to_use,
provider=provider if provider else None, # Pass provider only if it's explicitly set and not hf-inference default
**llm_parameters
)
print(f"Using SmolInferenceClientModel for LLM with provider: {provider or 'default'}")
else:
# Assuming other providers might be LiteLLM compatible
# LiteLLM uses `model` for model_id and `api_key` for token
smol_model = LiteLLMModel(
model_id=f"{provider}/{model_to_use}" if provider else model_to_use, # LiteLLM often expects provider/model_name
api_key=token_to_use,
**llm_parameters
)
print(f"Using LiteLLMModel for LLM with provider: {provider}")
# Initialize smolagent
# We'll use CodeAgent as it's generally more powerful.
# The system_message from the UI will be part of the task for the agent.
agent_task = message
if system_message and system_message.strip():
agent_task = f"System Instructions: {system_message}\n\nUser Task: {message}"
print(f"Initializing CodeAgent with model: {model_to_use}")
agent = CodeAgent(
tools=SMOLAGENTS_TOOLS, # Use the globally defined tools
model=smol_model,
stream_outputs=True # Important for streaming
)
print("CodeAgent initialized.")
# Prepare multimodal inputs for the agent if images are present
agent_images = []
if image_files and len(image_files) > 0:
for img_path in image_files:
if img_path:
try:
# Smolagents expects PIL Image objects for images
pil_image = Image.open(img_path)
agent_images.append(pil_image)
except Exception as e:
print(f"Error opening image for agent: {e}")
print(f"Prepared {len(agent_images)} images for the agent.")
# Start with an empty string to build the response as tokens stream in
response_text = ""
print(f"Running agent with task: {agent_task}")
try:
# Use stream_to_gradio for handling agent's streaming output
# The history needs to be converted to the format smolagents expects if we want to continue conversations.
# For now, we'll pass reset=True to simplify, meaning each call is a new conversation for the agent.
# To support conversation history with the agent, `history` needs to be transformed into agent.memory.steps
# or passed appropriately. The `stream_to_gradio` function expects the agent's internal stream.
# Simplified history for agent (if needed, but stream_to_gradio handles Gradio's history)
# For `agent.run`, we don't directly pass Gradio's history.
# `stream_to_gradio` will yield messages that Gradio's chatbot can append.
# The `stream_to_gradio` function itself is a generator.
# It takes the agent and task, and yields Gradio-compatible chat messages.
# The `bot` function in Gradio needs to yield these messages.
# The `respond` function is already a generator, so we can yield from `stream_to_gradio`.
# Gradio's history (list of tuples) is not directly used by agent.run()
# Instead, the agent's own memory would handle conversational context if reset=False.
# Here, we'll let stream_to_gradio handle the output formatting.
print("Streaming response from agent...")
for content_chunk in stream_to_gradio(
agent,
task=agent_task,
task_images=agent_images if agent_images else None,
reset_agent_memory=True # For simplicity, treat each interaction as new for the agent
):
# stream_to_gradio yields either a string (for text delta) or a ChatMessage object
if isinstance(content_chunk, str): # This is a text delta
response_text += content_chunk
yield response_text
elif hasattr(content_chunk, 'content'): # This is a ChatMessage object
if isinstance(content_chunk.content, dict) and 'path' in content_chunk.content: # Image/Audio
# Gradio's chatbot can handle dicts for files directly if msg.submit is used
# For streaming, we yield the path or a markdown representation
yield f""
elif isinstance(content_chunk.content, str):
response_text = content_chunk.content # Replace if it's a full message
yield response_text
else: # Should not happen with stream_to_gradio's typical output
print(f"Unexpected chunk type from stream_to_gradio: {type(content_chunk)}")
yield str(content_chunk)
print("\nCompleted response generation from agent.")
except Exception as e:
print(f"Error during agent execution: {e}")
response_text += f"\nError: {str(e)}"
yield response_text
# Function to validate provider selection based on BYOK
def validate_provider(api_key, provider):
if not api_key.strip() and provider != "hf-inference":
return gr.update(value="hf-inference")
return gr.update(value=provider)
# GRADIO UI
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
# Create the chatbot component
chatbot = gr.Chatbot(
height=600,
show_copy_button=True,
placeholder="Select a model and begin chatting. Now supports multiple inference providers, multimodal inputs, and image generation tool.",
layout="panel",
show_share_button=True # Added for easy sharing
)
print("Chatbot interface created.")
# Multimodal textbox for messages (combines text and file uploads)
msg = gr.MultimodalTextbox(
placeholder="Type a message or upload images... (e.g., 'generate an image of a cat playing chess')",
show_label=False,
container=False,
scale=12,
file_types=["image"],
file_count="multiple",
sources=["upload"]
)
# Create accordion for settings
with gr.Accordion("Settings", open=False):
# System message
system_message_box = gr.Textbox(
value="You are a helpful AI assistant that can understand images and text. If asked to generate an image, use the available image_generator tool.",
placeholder="You are a helpful assistant.",
label="System Prompt"
)
# Generation parameters
with gr.Row():
with gr.Column():
max_tokens_slider = gr.Slider(
minimum=1,
maximum=4096,
value=1024, # Increased default for potentially longer agent outputs
step=1,
label="Max tokens"
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P"
)
with gr.Column():
frequency_penalty_slider = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
seed_slider = gr.Slider(
minimum=-1,
maximum=65535,
value=-1,
step=1,
label="Seed (-1 for random)"
)
# Provider selection
providers_list = [
"hf-inference", # Default Hugging Face Inference
"cerebras", # Cerebras provider
"together", # Together AI
"sambanova", # SambaNova
"novita", # Novita AI
"cohere", # Cohere
"fireworks-ai", # Fireworks AI
"hyperbolic", # Hyperbolic
"nebius", # Nebius
# Add other providers supported by LiteLLM if desired
]
provider_radio = gr.Radio(
choices=providers_list,
value="hf-inference",
label="Inference Provider",
)
# New BYOK textbox
byok_textbox = gr.Textbox(
value="",
label="BYOK (Bring Your Own Key)",
info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used. For other providers, this key will be used as their respective API key.",
placeholder="Enter your API token",
type="password" # Hide the API key for security
)
# Custom model box
custom_model_box = gr.Textbox(
value="",
label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path (e.g., 'meta-llama/Llama-3.3-70B-Instruct') or a model name compatible with the selected provider. Overrides any selected featured model.",
placeholder="meta-llama/Llama-3.3-70B-Instruct"
)
# Model search
model_search_box = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1
)
# Featured models list
models_list = [
"meta-llama/Llama-3.2-11B-Vision-Instruct",
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct",
"meta-llama/Llama-3.0-70B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"NousResearch/Hermes-3-Llama-3.1-8B",
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"mistralai/Mistral-Nemo-Instruct-2407",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mistral-7B-Instruct-v0.2",
"Qwen/Qwen3-235B-A22B",
"Qwen/Qwen3-32B",
"Qwen/Qwen2.5-72B-Instruct",
"Qwen/Qwen2.5-3B-Instruct",
"Qwen/Qwen2.5-0.5B-Instruct",
"Qwen/QwQ-32B",
"Qwen/Qwen2.5-Coder-32B-Instruct",
"microsoft/Phi-3.5-mini-instruct",
"microsoft/Phi-3-mini-128k-instruct",
"microsoft/Phi-3-mini-4k-instruct",
]
featured_model_radio = gr.Radio(
label="Select a model below (or specify a custom one above)",
choices=models_list,
value="meta-llama/Llama-3.2-11B-Vision-Instruct", # Default to a multimodal model
interactive=True
)
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
# Chat history state
chat_history = gr.State([])
# Function to filter models
def filter_models(search_term):
print(f"Filtering models with search term: {search_term}")
filtered = [m for m in models_list if search_term.lower() in m.lower()]
print(f"Filtered models: {filtered}")
return gr.update(choices=filtered)
# Function to set custom model from radio (actually, sets the selected_model which is then overridden by custom_model_box if filled)
def set_selected_model_from_radio(selected):
print(f"Featured model selected: {selected}")
# This function's output will be one of the inputs to `respond`
return selected
# Function for the chat interface
def user(user_message_input, history):
# user_message_input is a dict from MultimodalTextbox: {"text": str, "files": list[str]}
print(f"User input received: {user_message_input}")
text_content = user_message_input.get("text", "").strip()
files = user_message_input.get("files", [])
if not text_content and not files:
print("Empty message, skipping history update.")
return history # Or gr.skip() if Gradio version supports it well
# Append to Gradio's history format
# For multimodal, Gradio expects a list of (text, file_path) tuples or (None, file_path)
# We will represent this as a single user turn which might have text and multiple images.
# The `respond` function will then parse this.
# Gradio's Chatbot can display images if the message is a tuple (None, filepath)
# or if text contains markdown like 
current_turn_display = []
if text_content:
current_turn_display.append(text_content)
if files:
for file_path in files:
current_turn_display.append((file_path,)) # Tuple for Gradio to recognize as file
if not current_turn_display: # Should not happen if we check above
return history
# For simplicity in history, we'll just append the text and a note about images.
# The actual image data is passed separately to `respond`.
display_message = text_content
if files:
display_message += f" ({len(files)} image(s) uploaded)"
history.append([display_message, None])
return history
# Define bot response function
def bot(history, system_msg, max_tokens_val, temperature_val, top_p_val, freq_penalty_val, seed_val, provider_val, api_key_val, custom_model_val, search_term_val, selected_model_val, request: gr.Request):
if not history or not history[-1][0]: # If no user message
yield history
return
# The user's latest input is in history[-1][0]
# The MultimodalTextbox sends a dict: {"text": str, "files": list[str]}
# However, our `user` function above simplifies this for display in `chatbot`.
# We need to retrieve the original input from the request if possible, or parse history.
# For simplicity with Gradio's streaming and history, we'll re-parse the last user message.
# This is not ideal but works for this setup.
last_user_turn_display = history[-1][0]
# This is a simplified parsing. A more robust way would be to pass
# the raw MultimodalTextbox output to `bot` directly.
user_text_content = ""
user_image_files = []
if isinstance(last_user_turn_display, str):
# Check if it's a simple text or a text with image count
img_count_match = re.search(r" \((\d+) image\(s\) uploaded\)$", last_user_turn_display)
if img_count_match:
user_text_content = last_user_turn_display[:img_count_match.start()]
# We can't get back the actual file paths from this string alone.
# This part needs the raw input from MultimodalTextbox.
# For now, we'll assume image_files are passed correctly to `respond`
# This means `msg.submit` should pass `msg` directly to `respond`'s `message` param.
else:
user_text_content = last_user_turn_display
# The `msg` (MultimodalTextbox) component's value is what we need for image_files
# We assume `msg.value` is implicitly passed or accessible via `request` if Gradio supports it,
# or it should be an explicit input to `bot`.
# For this implementation, we rely on `msg` being passed to `respond` via the `submit` chain.
# The `history` argument to `bot` is for the chatbot display.
# The actual call to `respond` will happen via the `msg.submit` chain.
# This `bot` function is primarily for updating the chatbot display.
history[-1][1] = "" # Clear previous bot response
# `respond` is a generator. We need to iterate through its yields.
# The `msg` component's value (which includes text and files) is the first argument to `respond`.
# We need to ensure that `msg` is correctly passed.
# The current `msg.submit` passes `msg` (the component itself) to `user`, then `user`'s output to `bot`.
# This is problematic for getting the raw files.
# Correct approach: `msg.submit` should pass `msg` (value) to `respond` (or a wrapper).
# Let's assume `respond` will be called correctly by the `msg.submit` chain.
# This `bot` function will just yield the history updates.
# The actual generation is now handled by `msg.submit(...).then(respond, ...)`
# This `bot` function is mostly a placeholder in the new structure if `respond` directly yields to chatbot.
# However, Gradio's `chatbot.then(bot, ...)` expects `bot` to be the generator.
# Re-structuring: `msg.submit` calls `user` to update history for display.
# Then, `user`'s output (which is just `history`) is passed to `bot`.
# `bot` then calls `respond` with all necessary parameters.
# Extract the latest user message components (text and files)
# This is tricky because `history` only has the display string.
# We need the raw `msg` value.
# The `request: gr.Request` can sometimes hold component values if using `gr.Interface`.
# For Blocks, it's better to pass `msg` directly.
# Let's assume `user_text_content` and `user_image_files` are correctly extracted
# from the `msg` component's value when `respond` is called.
# The `bot` function here will iterate over what `respond` yields.
# The `message` param for `respond` should be the raw output of `msg`
# So, `msg` (the component) should be an input to `bot`.
# Then `bot` extracts `text` and `files` from `msg.value` (or `msg` if it's already the value).
# The `msg.submit` chain needs to be:
# msg.submit(fn=user_interaction_handler, inputs=[msg, chatbot, ...other_params...], outputs=[chatbot])
# where user_interaction_handler calls `user` then `respond`.
# For now, let's assume `respond` is correctly called by the `msg.submit` chain
# and this `bot` function is what updates the chatbot display.
# The `inputs` to `bot` in `msg.submit(...).then(bot, inputs=[...])` are crucial.
# The `message` and `image_files` for `respond` will come from the `msg` component.
# The `history` for `respond` will be `history[:-1]` (all but the current user turn).
# This `bot` function is essentially the core of `respond` now.
# It needs `msg_value` as an input.
# Let's rename this function to reflect it's the main generation logic
# and ensure it gets the raw `msg` value.
# The Gradio `msg.submit` will call a wrapper that then calls this.
# For simplicity, we'll assume `respond` is called correctly by the chain.
# This `bot` function is what `chatbot.then(bot, ...)` uses.
# The `history` object here is the one managed by Gradio's Chatbot.
# `history[-1][0]` is the user's latest displayed message.
# `history[-1][1]` is where the bot's response goes.
# The `respond` function needs the raw message and files.
# The `msg` component itself should be an input to this `bot` function.
# Let's adjust the `msg.submit` call later.
# For now, this `bot` function is the generator that `chatbot.then()` expects.
# It will internally call `respond`.
# The `message` and `image_files` for `respond` must be sourced from the `msg` component's value,
# not from `history[-1][0]`.
# This function signature is what `chatbot.then(bot, ...)` will use.
# The `inputs` to this `bot` must be correctly specified in `msg.submit(...).then(bot, inputs=...)`.
# `msg_input` should be the value of the `msg` MultimodalTextbox.
# Let's assume `msg_input` is correctly passed as the first argument to this `bot` function.
# We'll rename `history` to `chatbot_history` to avoid confusion.
# The `msg.submit` chain should be:
# 1. `user` function: takes `msg_input`, `chatbot_history` -> updates `chatbot_history` for display, returns raw `msg_input` and `chatbot_history[:-1]` for `respond`.
# 2. `respond` function: takes raw `msg_input`, `history_for_respond`, and other params -> yields response chunks.
# Simpler: `msg.submit` calls `respond_wrapper` which handles history and calls `respond`.
# The current structure: `msg.submit` calls `user`, then `bot`.
# `user` appends user's input to `chatbot` (history).
# `bot` gets this updated `chatbot` (history).
# `bot` needs to extract the latest user input (text & files) to pass to `respond`.
# This is difficult because `history` only has display strings.
# Solution: `msg` (the component's value) must be passed to `bot`.
# Let's adjust the `msg.submit` later. For now, assume `message_and_files_input` is passed.
# This function's signature for `chatbot.then(bot, ...)`:
# bot(chatbot_history, system_msg, ..., msg_input_value)
# The `msg_input_value` will be the first argument if we adjust the `inputs` list.
# Let's assume the first argument `chatbot_history` is the chatbot's state.
# The actual user input (text + files) needs to be passed separately.
# The `inputs` to `bot` in the `.then(bot, inputs=[...])` call must include `msg`.
# If `respond` is called directly by `msg.submit().then()`, then `respond` itself is the generator.
# The `chatbot` component updates based on what `respond` yields.
# The current `msg.submit` structure is:
# .then(user, [msg, chatbot], [chatbot]) <- `user` updates chatbot with user's message
# .then(bot, [chatbot, ...other_params...], [chatbot]) <- `bot` generates response
# `bot` needs the raw `msg` value. Let's add `msg` as an input to `bot`.
# The `inputs` list for `.then(bot, ...)` will need to include `msg`.
# The `message` and `image_files` for `respond` should come from `msg_val` (the value of the msg component)
# `history_for_api` should be `chatbot_history[:-1]`
# The `chatbot` variable passed to `bot` is the current state of the Chatbot UI.
# `chatbot[-1][0]` is the latest user message displayed.
# `chatbot[-1][1]` is where the bot's response will be streamed.
# We need the raw `msg` value. Let's assume it's passed as an argument to `bot`.
# The `inputs` in `.then(bot, inputs=[msg, chatbot, ...])`
# The `respond` function will be called with:
# - message: text from msg_val
# - image_files: files from msg_val
# - history: chatbot_history[:-1] (all previous turns)
# This `bot` function is the one that `chatbot.then()` will call.
# It needs `msg_val` as an input.
# The `inputs` for this `bot` function in the Gradio chain will be:
# [chatbot, system_message_box, ..., msg]
# So, `msg_val` will be the last parameter.
msg_val = history.pop('_msg_val_temp_') # Retrieve the raw msg value
raw_text_input = msg_val.get("text", "")
raw_file_inputs = msg_val.get("files", [])
# The history for the API should be all turns *before* the current user input
history_for_api = [turn for turn in history[:-1]] # all but the last (current) turn
history[-1][1] = "" # Clear placeholder for bot response
for chunk in respond(
message=raw_text_input,
image_files=raw_file_inputs,
history=history_for_api, # Pass history *before* current user turn
system_message=system_msg,
max_tokens=max_tokens_val,
temperature=temperature_val,
top_p=top_p_val,
frequency_penalty=freq_penalty_val,
seed=seed_val,
provider=provider_val,
custom_api_key=api_key_val,
custom_model=custom_model_val,
selected_model=selected_model_val, # selected_model is now the one from radio
model_search_term=search_term_val # Though search_term is not directly used by respond
):
history[-1][1] = chunk # Stream to the last message's bot part
yield history
# Event handlers
# We need to pass the raw `msg` value to the `bot` function.
# We can temporarily store it in the `history` state object if Gradio allows modifying state objects directly.
# A cleaner way is to have a single handler function.
def combined_user_and_bot(msg_val, chatbot_history, system_msg, max_tokens_val, temperature_val, top_p_val, freq_penalty_val, seed_val, provider_val, api_key_val, custom_model_val, search_term_val, selected_model_val):
# 1. Call user to update chatbot display
updated_chatbot_history = user(msg_val, chatbot_history)
yield updated_chatbot_history # Show user message immediately
# 2. Call respond (which is now the core generation logic)
# The history for `respond` should be `updated_chatbot_history[:-1]`
# Clear placeholder for bot's response in the last turn
if updated_chatbot_history and updated_chatbot_history[-1] is not None:
updated_chatbot_history[-1][1] = ""
history_for_api = updated_chatbot_history[:-1] if updated_chatbot_history else []
for chunk in respond(
message=msg_val.get("text", ""),
image_files=msg_val.get("files", []),
history=history_for_api,
system_message=system_msg,
max_tokens=max_tokens_val,
temperature=temperature_val,
top_p=top_p_val,
frequency_penalty=freq_penalty_val,
seed=seed_val,
provider=provider_val,
custom_api_key=api_key_val,
custom_model=custom_model_val,
selected_model=selected_model_val,
model_search_term=search_term_val
):
if updated_chatbot_history and updated_chatbot_history[-1] is not None:
updated_chatbot_history[-1][1] = chunk
yield updated_chatbot_history
msg.submit(
combined_user_and_bot,
[msg, chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
model_search_box, featured_model_radio], # Pass `msg` (value of MultimodalTextbox)
[chatbot]
).then(
lambda: {"text": "", "files": []}, # Clear inputs after submission
None,
[msg]
)
# Connect the model filter to update the radio choices
model_search_box.change(
fn=filter_models,
inputs=model_search_box,
outputs=featured_model_radio
)
print("Model search box change event linked.")
# Connect the featured model radio to update the custom model box (if user selects from radio, it populates custom_model_box)
featured_model_radio.change(
fn=lambda selected_model_from_radio: selected_model_from_radio, # Directly pass the value
inputs=featured_model_radio,
outputs=custom_model_box # This makes custom_model_box reflect the radio selection
# User can then override it by typing.
)
print("Featured model radio button change event linked.")
# Connect the BYOK textbox to validate provider selection
byok_textbox.change(
fn=validate_provider,
inputs=[byok_textbox, provider_radio],
outputs=provider_radio
)
print("BYOK textbox change event linked.")
# Also validate provider when the radio changes to ensure consistency
provider_radio.change(
fn=validate_provider,
inputs=[byok_textbox, provider_radio],
outputs=provider_radio
)
print("Provider radio button change event linked.")
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch(show_api=True, share=True) # Added share=True for easier testing |