Spaces:
Running
Running
File size: 39,447 Bytes
cb919f0 c5a20a4 ea82e64 cb919f0 717cd1f cb919f0 717cd1f cb919f0 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 cb919f0 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f cb919f0 81286e1 717cd1f 75bf974 81286e1 717cd1f e45083a 81286e1 717cd1f e45083a 81286e1 cb919f0 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 6f66243 717cd1f 6f66243 81286e1 717cd1f 6f66243 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 cb919f0 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 6f66243 717cd1f 6f66243 717cd1f 81286e1 cb919f0 717cd1f 81286e1 cb919f0 717cd1f cb919f0 717cd1f 81286e1 717cd1f 109f11f 717cd1f 81286e1 6f66243 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 6f66243 717cd1f 6f66243 717cd1f 81286e1 717cd1f 6f66243 717cd1f 6f66243 717cd1f cb919f0 717cd1f 6f66243 717cd1f 6f66243 717cd1f 6f66243 717cd1f 6f66243 717cd1f 6f66243 717cd1f 81286e1 717cd1f 6f66243 717cd1f 6f66243 717cd1f 6f66243 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 6f66243 717cd1f 81286e1 717cd1f cb919f0 81286e1 717cd1f cb919f0 717cd1f 81286e1 6f66243 717cd1f 6f66243 717cd1f 6f66243 717cd1f 81286e1 cb919f0 6f66243 717cd1f 6f66243 717cd1f 6f66243 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f cb919f0 717cd1f 6f66243 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 81286e1 717cd1f 6f66243 717cd1f 6f66243 717cd1f 6f66243 717cd1f 6f66243 717cd1f 81286e1 717cd1f 81286e1 717cd1f 6f66243 717cd1f 81286e1 6f66243 717cd1f 6f66243 717cd1f 6f66243 717cd1f cb919f0 717cd1f cb919f0 717cd1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json
import base64
from PIL import Image
import io
import requests
from smolagents.mcp_client import MCPClient
from mcp import ToolResult # For type hinting, good practice
from mcp.common.content_block import ValueContentBlock # To access the actual tool return value
import numpy as np # For handling audio array
import soundfile as sf # For converting audio array to WAV
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Function to encode image to base64
def encode_image(image_path):
if not image_path:
print("No image path provided")
return None
try:
print(f"Encoding image from path: {image_path}")
# If it's already a PIL Image
if isinstance(image_path, Image.Image):
image = image_path
else:
# Try to open the image file
image = Image.open(image_path)
# Convert to RGB if image has an alpha channel (RGBA)
if image.mode == 'RGBA':
image = image.convert('RGB')
# Encode to base64
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
print("Image encoded successfully")
return img_str
except Exception as e:
print(f"Error encoding image: {e}")
return None
# Dictionary to store active MCP connections
mcp_connections = {}
def connect_to_mcp_server(server_url, server_name=None):
"""Connect to an MCP server and return available tools"""
if not server_url:
return None, "No server URL provided"
try:
# Create an MCP client and connect to the server
client = MCPClient({"url": server_url})
# Get available tools
tools = client.get_tools()
# Store the connection for later use
name = server_name or f"Server_{len(mcp_connections)}"
mcp_connections[name] = {"client": client, "tools": tools, "url": server_url}
return name, f"Successfully connected to {name} with {len(tools)} available tools"
except Exception as e:
print(f"Error connecting to MCP server: {e}")
return None, f"Error connecting to MCP server: {str(e)}"
def list_mcp_tools(server_name):
"""List available tools for a connected MCP server"""
if server_name not in mcp_connections:
return "Server not connected"
tools = mcp_connections[server_name]["tools"]
tool_info = []
for tool in tools:
tool_info.append(f"- {tool.name}: {tool.description}")
if not tool_info:
return "No tools available for this server"
return "\n".join(tool_info)
def call_mcp_tool(server_name, tool_name, **kwargs):
"""Call a specific tool from an MCP server"""
if server_name not in mcp_connections:
return {"error": f"Server '{server_name}' not connected"} # Return dict for consistency
client_data = mcp_connections[server_name]
client = client_data["client"]
server_tools = client_data["tools"]
# Find the requested tool
tool = next((t for t in server_tools if t.name == tool_name), None)
if not tool:
return {"error": f"Tool '{tool_name}' not found on server '{server_name}'"}
try:
# Call the tool with provided arguments
mcp_tool_result: ToolResult = client.call_tool(tool_name=tool_name, arguments=kwargs)
actual_result = None
if mcp_tool_result.content:
content_block = mcp_tool_result.content[0]
if isinstance(content_block, ValueContentBlock):
actual_result = content_block.value
elif hasattr(content_block, 'text'): # e.g., TextContentBlock
actual_result = content_block.text
else:
actual_result = str(content_block) # Fallback
else: # No content
return {"warning": "Tool returned no content."}
# Special handling for audio result (e.g., from Kokoro TTS)
# This checks if the result is a tuple (sample_rate, audio_data_list)
# Gradio MCP server serializes numpy arrays to lists.
if (server_name == "kokoroTTS" and tool_name == "text_to_audio" and
isinstance(actual_result, tuple) and len(actual_result) == 2 and
isinstance(actual_result[0], int) and
(isinstance(actual_result[1], list) or isinstance(actual_result[1], np.ndarray))):
print(f"Received audio data from {server_name}.{tool_name}")
sample_rate, audio_data_list = actual_result
# Convert list to numpy array if necessary
audio_data = np.array(audio_data_list)
# Ensure correct dtype for soundfile (float32 is common, or int16)
# Kokoro returns float, likely in [-1, 1] range.
if audio_data.dtype != np.float32 and audio_data.dtype != np.int16:
# Attempt to normalize if it looks like it's not in [-1, 1] for float
if np.issubdtype(audio_data.dtype, np.floating) and (np.min(audio_data) < -1.1 or np.max(audio_data) > 1.1):
print(f"Warning: Audio data for {server_name}.{tool_name} might not be normalized. Min: {np.min(audio_data)}, Max: {np.max(audio_data)}")
audio_data = audio_data.astype(np.float32)
wav_io = io.BytesIO()
sf.write(wav_io, audio_data, sample_rate, format='WAV')
wav_io.seek(0)
wav_b64 = base64.b64encode(wav_io.read()).decode('utf-8')
return {
"type": "audio_b64",
"data": wav_b64,
"message": f"Audio generated by {server_name}.{tool_name}"
}
# Handle other types of results
if isinstance(actual_result, dict):
return actual_result
elif isinstance(actual_result, str):
try: # If string is JSON, parse to dict
return json.loads(actual_result)
except json.JSONDecodeError:
return {"text": actual_result} # Wrap raw string
else:
return {"value": str(actual_result)} # Fallback for other primitive types
except Exception as e:
print(f"Error calling MCP tool: {e}")
import traceback
traceback.print_exc()
return {"error": f"Error calling MCP tool: {str(e)}"}
def analyze_message_for_tool_call(message, active_mcp_servers, client, model_to_use, system_message):
"""Analyze a message to determine if an MCP tool should be called"""
if not message or not message.strip():
return None, None
tool_info = []
for server_name in active_mcp_servers:
if server_name in mcp_connections:
server_tools_raw = list_mcp_tools(server_name) # This returns a string
if server_tools_raw != "Server not connected" and server_tools_raw != "No tools available for this server":
# Parse the string from list_mcp_tools
for line in server_tools_raw.split("\n"):
if line.startswith("- "):
parts = line[2:].split(":", 1)
if len(parts) == 2:
tool_info.append({
"server_name": server_name,
"tool_name": parts[0].strip(),
"description": parts[1].strip()
})
if not tool_info:
return None, None
tools_desc = []
for info in tool_info:
tools_desc.append(f"{info['server_name']}.{info['tool_name']}: {info['description']}")
tools_string = "\n".join(tools_desc)
analysis_system_prompt = f"""You are an assistant that helps determine if a user message requires using an external tool.
Available tools:
{tools_string}
Your job is to:
1. Analyze the user's message.
2. Determine if they're asking to use one of the tools.
3. If yes, respond ONLY with a JSON object with "server_name", "tool_name", and "parameters".
4. If no, respond ONLY with the exact string "NO_TOOL_NEEDED".
Example 1 (User wants TTS):
User: "Please turn this text into speech: Hello world"
Response: {{"server_name": "kokoroTTS", "tool_name": "text_to_audio", "parameters": {{"text": "Hello world", "speed": 1.0}}}}
Example 2 (User wants TTS with different server name):
User: "Use mySpeechTool to say 'good morning'"
Response: {{"server_name": "mySpeechTool", "tool_name": "text_to_audio", "parameters": {{"text": "good morning"}}}}
Example 3 (User does not want a tool):
User: "What is the capital of France?"
Response: NO_TOOL_NEEDED"""
try:
response = client.chat_completion(
model=model_to_use,
messages=[
{"role": "system", "content": analysis_system_prompt},
{"role": "user", "content": message}
],
temperature=0.1,
max_tokens=300
)
analysis = response.choices[0].message.content.strip()
print(f"Tool analysis LLM response: '{analysis}'")
if analysis == "NO_TOOL_NEEDED":
return None, None
try:
tool_call = json.loads(analysis)
if isinstance(tool_call, dict) and "server_name" in tool_call and "tool_name" in tool_call:
return tool_call.get("server_name"), {
"tool_name": tool_call.get("tool_name"),
"parameters": tool_call.get("parameters", {})
}
else:
print(f"LLM response for tool call was not a valid JSON with required keys: {analysis}")
return None, None
except json.JSONDecodeError:
print(f"Failed to parse tool call JSON from LLM: {analysis}")
return None, None
except Exception as e:
print(f"Error analyzing message for tool calls: {str(e)}")
return None, None
def respond(
message,
image_files,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
provider,
custom_api_key,
custom_model,
model_search_term,
selected_model,
mcp_enabled=False,
active_mcp_servers=None,
mcp_interaction_mode="Natural Language"
):
print(f"Received message: {message}")
print(f"Received {len(image_files) if image_files else 0} images")
# print(f"History: {history}") # Can be verbose
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected provider: {provider}")
print(f"Custom API Key provided: {bool(custom_api_key.strip())}")
print(f"Selected model (custom_model): {custom_model}")
print(f"Model search term: {model_search_term}")
print(f"Selected model from radio: {selected_model}")
print(f"MCP enabled: {mcp_enabled}")
print(f"Active MCP servers: {active_mcp_servers}")
print(f"MCP interaction mode: {mcp_interaction_mode}")
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
if custom_api_key.strip() != "":
print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
else:
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
client = InferenceClient(token=token_to_use, provider=provider)
print(f"Hugging Face Inference Client initialized with {provider} provider.")
if seed == -1:
seed = None
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
print(f"Model selected for inference: {model_to_use}")
if mcp_enabled and message:
if message.startswith("/mcp"):
command_parts = message.split(" ", 3)
if len(command_parts) < 3:
yield "Invalid MCP command. Format: /mcp <server_name> <tool_name> [arguments_json]"
return
_, server_name, tool_name = command_parts[:3]
args_json = "{}" if len(command_parts) < 4 else command_parts[3]
try:
args_dict = json.loads(args_json)
result = call_mcp_tool(server_name, tool_name, **args_dict)
if isinstance(result, dict) and result.get("type") == "audio_b64":
yield f"<audio controls src=\"data:audio/wav;base64,{result.get('data')}\"></audio>"
elif isinstance(result, dict) and "error" in result:
yield f"Error: {result.get('error')}"
elif isinstance(result, dict):
yield json.dumps(result, indent=2)
else:
yield str(result)
return
except json.JSONDecodeError:
yield f"Invalid JSON arguments: {args_json}"
return
except Exception as e:
yield f"Error executing MCP command: {str(e)}"
return
elif mcp_interaction_mode == "Natural Language" and active_mcp_servers and active_mcp_servers:
print("Attempting natural language tool call detection...")
server_name, tool_info = analyze_message_for_tool_call(
message, active_mcp_servers, client, model_to_use, system_message
)
if server_name and tool_info and tool_info.get("tool_name"):
try:
print(f"Calling tool via natural language: {server_name}.{tool_info['tool_name']} with parameters: {tool_info['parameters']}")
result = call_mcp_tool(server_name, tool_info['tool_name'], **tool_info.get('parameters', {}))
response_message = f"I used the **{tool_info['tool_name']}** tool from **{server_name}**."
if isinstance(result, dict) and result.get("message"):
response_message += f" ({result.get('message')})"
response_message += "\n\n"
if isinstance(result, dict) and result.get("type") == "audio_b64":
audio_html = f"<audio controls src=\"data:audio/wav;base64,{result.get('data')}\"></audio>"
yield response_message + audio_html
elif isinstance(result, dict) and "error" in result:
result_str = f"Tool Error: {result.get('error')}"
yield response_message + result_str
elif isinstance(result, dict):
result_str = f"Result:\n```json\n{json.dumps(result, indent=2)}\n```"
yield response_message + result_str
else:
result_str = f"Result:\n{str(result)}"
yield response_message + result_str
return
except Exception as e:
print(f"Error executing MCP tool via natural language: {str(e)}")
# yield f"Sorry, I encountered an error trying to use the tool: {str(e)}"
# Fall through to normal LLM response if tool call fails here
else:
print("No tool call detected by natural language analysis or tool_info incomplete.")
user_content_parts = []
if message and message.strip():
user_content_parts.append({"type": "text", "text": message})
if image_files and len(image_files) > 0:
for img_path in image_files:
if img_path:
try:
encoded_image = encode_image(img_path)
if encoded_image:
user_content_parts.append({
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{encoded_image}"}
})
except Exception as e:
print(f"Error encoding image {img_path}: {e}")
if not user_content_parts: # If message was only /mcp command and processed
print("No further content for LLM after MCP command processing.")
# This might happen if an MCP command was fully handled and returned.
# If yield was used, the function already exited. If not, we might need to ensure no LLM call.
# However, the logic above for MCP commands uses `yield ...; return`, so this path might not be hit often.
# If it *is* hit, it means the MCP command didn't yield, and we should not proceed to LLM.
if message and message.startswith("/mcp"):
return # Ensure we don't fall through after a command that should have yielded.
final_user_content = user_content_parts if len(user_content_parts) > 1 else (user_content_parts[0] if user_content_parts else "")
augmented_system_message = system_message
if mcp_enabled and active_mcp_servers:
tool_list_for_prompt = []
for server_name_iter in active_mcp_servers:
if server_name_iter in mcp_connections:
server_tools_str = list_mcp_tools(server_name_iter)
if server_tools_str and "not connected" not in server_tools_str and "No tools available" not in server_tools_str:
tool_list_for_prompt.append(f"From server '{server_name_iter}':\n{server_tools_str}")
if tool_list_for_prompt:
mcp_tools_description = "\n\n".join(tool_list_for_prompt)
if mcp_interaction_mode == "Command Mode":
augmented_system_message += f"\n\nYou have access to the following MCP tools. To use them, type a command in the format: /mcp <server_name> <tool_name> <arguments_json>\nTools:\n{mcp_tools_description}"
else: # Natural Language
augmented_system_message += f"\n\nYou have access to the following MCP tools. You can ask to use them in natural language, and I will try to detect when a tool is needed. If I miss it, you can try being more explicit about the tool name.\nTools:\n{mcp_tools_description}"
messages_for_api = [{"role": "system", "content": augmented_system_message}]
print("Initial messages array constructed.")
for val in history:
past_user_msg, past_assistant_msg = val
# Handle past user messages (could be text or multimodal)
if past_user_msg:
if isinstance(past_user_msg, list): # Already multimodal
messages_for_api.append({"role": "user", "content": past_user_msg})
elif isinstance(past_user_msg, str): # Text only
messages_for_api.append({"role": "user", "content": past_user_msg})
if past_assistant_msg:
messages_for_api.append({"role": "assistant", "content": past_assistant_msg})
if final_user_content: # Add current user message if it exists
messages_for_api.append({"role": "user", "content": final_user_content})
print(f"Latest user message appended (content type: {type(final_user_content)})")
# print(f"Full messages_for_api: {json.dumps(messages_for_api, indent=2)}") # Can be very verbose
llm_response_text = ""
print(f"Sending request to {provider} provider for model {model_to_use}.")
parameters = {
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
}
if seed is not None:
parameters["seed"] = seed
try:
stream = client.chat_completion(
model=model_to_use,
messages=messages_for_api,
stream=True,
**parameters
)
# print("Received tokens: ", end="", flush=True) # Can be too noisy
for chunk in stream:
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
token_text = chunk.choices[0].delta.content
if token_text:
# print(token_text, end="", flush=True) # Can be too noisy
llm_response_text += token_text
yield llm_response_text
# print() # Newline after tokens
except Exception as e:
print(f"Error during LLM inference: {e}")
llm_response_text += f"\nLLM Error: {str(e)}"
yield llm_response_text
print("Completed LLM response generation.")
# GRADIO UI
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
chatbot = gr.Chatbot(
height=600,
show_copy_button=True,
placeholder="Select a model and begin chatting. Supports multiple inference providers, multimodal inputs, and MCP tools.",
layout="panel",
show_label=False,
render=False # Delay rendering
)
print("Chatbot interface created.")
with gr.Row():
msg = gr.MultimodalTextbox(
placeholder="Type a message or upload images...",
show_label=False,
container=False,
scale=12,
file_types=["image"],
file_count="multiple",
sources=["upload"],
render=False # Delay rendering
)
chatbot.render()
msg.render()
with gr.Accordion("Settings", open=False):
system_message_box = gr.Textbox(
value="You are a helpful AI assistant that can understand images and text. If the user asks you to use a tool, try your best.",
placeholder="You are a helpful assistant.",
label="System Prompt"
)
with gr.Row():
with gr.Column(scale=1):
max_tokens_slider = gr.Slider(minimum=1, maximum=8192, value=1024, step=1, label="Max tokens")
temperature_slider = gr.Slider(minimum=0.0, maximum=2.0, value=0.7, step=0.01, label="Temperature")
top_p_slider = gr.Slider(minimum=0.0, maximum=1.0, value=0.95, step=0.01, label="Top-P")
with gr.Column(scale=1):
frequency_penalty_slider = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
seed_slider = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"]
provider_radio = gr.Radio(choices=providers_list, value="hf-inference", label="Inference Provider")
byok_textbox = gr.Textbox(value="", label="BYOK (Bring Your Own Key)", info="Enter a custom Hugging Face API key here. If empty, only 'hf-inference' provider can be used with the shared token.", placeholder="Enter your Hugging Face API token", type="password")
custom_model_box = gr.Textbox(value="", label="Custom Model ID", info="(Optional) Provide a custom Hugging Face model ID. Overrides selected featured model.", placeholder="meta-llama/Llama-3.1-70B-Instruct")
model_search_box = gr.Textbox(label="Filter Featured Models", placeholder="Search for a featured model...", lines=1)
models_list = [
"meta-llama/Llama-3.1-405B-Instruct-FP8", # Large model, might be slow/expensive
"meta-llama/Llama-3.1-70B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"mistralai/Mistral-Nemo-Instruct-2407",
"Qwen/Qwen2-72B-Instruct",
"Qwen/Qwen2-57B-A14B-Instruct",
"CohereForAI/c4ai-command-r-plus",
# Multimodal models
"Salesforce/LlavaLlama3-8b-hf",
"llava-hf/llava-v1.6-mistral-7b-hf",
"llava-hf/llava-v1.6-vicuna-13b-hf",
"microsoft/Phi-3-vision-128k-instruct",
"google/paligemma-3b-mix-448",
# Older but still popular
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3",
]
featured_model_radio = gr.Radio(label="Select a Featured Model", choices=models_list, value="meta-llama/Llama-3.1-8B-Instruct", interactive=True)
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?pipeline_tag=image-to-text&sort=trending)")
with gr.Accordion("MCP Settings", open=False):
mcp_enabled_checkbox = gr.Checkbox(label="Enable MCP Support", value=False, info="Enable Model Context Protocol support to connect to external tools and services")
with gr.Row():
mcp_server_url = gr.Textbox(label="MCP Server URL", placeholder="https://your-mcp-server.hf.space/gradio_api/mcp/sse", info="URL of the MCP server (usually ends with /gradio_api/mcp/sse for Gradio MCP servers)")
mcp_server_name = gr.Textbox(label="Server Name (Optional)", placeholder="e.g., kokoroTTS", info="A friendly name to identify this server")
mcp_connect_button = gr.Button("Connect to MCP Server")
mcp_status = gr.Textbox(label="MCP Connection Status", placeholder="No MCP servers connected", interactive=False)
active_mcp_servers = gr.Dropdown(label="Active MCP Servers for Chat", choices=[], multiselect=True, info="Select which connected MCP servers to make available to the LLM for this chat session")
mcp_mode = gr.Radio(label="MCP Interaction Mode", choices=["Natural Language", "Command Mode"], value="Natural Language", info="Choose how to interact with MCP tools")
gr.Markdown("""
### MCP Interaction Modes & Examples
**Natural Language Mode**: Describe what you want.
`Please say 'Hello world' using the kokoroTTS server.`
`Use my speech tool to read this: "Welcome"`
**Command Mode**: Use structured commands (server name must match connected server's friendly name).
`/mcp <server_name> <tool_name> {"param1": "value1"}`
Example: `/mcp kokoroTTS text_to_audio {"text": "Hello world", "speed": 1.0}`
""")
# Chat history state
# The chatbot component itself manages history for display.
# The `respond` function receives this display history and reconstructs API history.
def filter_models_ui_update(search_term):
print(f"Filtering models with search term: {search_term}")
filtered = [m for m in models_list if search_term.lower() in m.lower()]
if not filtered: # If search yields no results, show all models
filtered = models_list
print(f"Filtered models: {filtered}")
return gr.Radio(choices=filtered, label="Select a Featured Model", value=featured_model_radio.value if featured_model_radio.value in filtered else (filtered[0] if filtered else None))
def set_custom_model_from_radio_ui_update(selected_featured_model):
print(f"Featured model selected: {selected_featured_model}")
return selected_featured_model # This updates the custom_model_box
def connect_mcp_server_ui_update(url, name_optional):
actual_name, status_msg = connect_to_mcp_server(url, name_optional)
updated_server_choices = list(mcp_connections.keys())
# Keep existing selection if possible
current_selection = active_mcp_servers.value if active_mcp_servers.value else []
valid_selection = [s for s in current_selection if s in updated_server_choices]
if actual_name and actual_name not in valid_selection: # Auto-select newly connected server
valid_selection.append(actual_name)
return status_msg, gr.Dropdown(choices=updated_server_choices, value=valid_selection, label="Active MCP Servers for Chat")
# This function processes the user's multimodal input and adds it to the chatbot history.
# It prepares the history in a way that `bot` can understand.
def handle_user_input(multimodal_input, history_list: list):
text_content = multimodal_input.get("text", "").strip()
files = multimodal_input.get("files", [])
# This will be the entry for the user's turn in the history
user_turn_for_api = []
user_turn_for_display = ""
if text_content:
user_turn_for_api.append({"type": "text", "text": text_content})
user_turn_for_display = text_content
if files:
display_files_md = ""
for file_path in files:
if file_path and isinstance(file_path, str): # Gradio provides temp path
encoded_img = encode_image(file_path) # For API
if encoded_img:
user_turn_for_api.append({"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{encoded_img}"}})
# For display, Gradio handles showing the image from MultimodalTextbox output
# We'll just make a note in the display string
display_files_md += f"\n<img src='file={file_path}' style='max-height:150px; display:block;' alt='uploaded image'>" # Gradio can render this!
if user_turn_for_display:
user_turn_for_display += display_files_md
else:
user_turn_for_display = display_files_md if display_files_md else "Image(s) uploaded"
if not user_turn_for_display and not user_turn_for_api: # Empty input
return history_list, multimodal_input # No change
# The `respond` function expects history as list of [user_api_content, assistant_text_content]
# For the current turn, we add [user_api_content, None]
# The display history for chatbot is [user_display_content, assistant_text_content]
# We pass the API-formatted user turn to the `message` arg of `respond`
# and the existing history to the `history` arg.
# The chatbot's display history is updated here.
history_list.append([user_turn_for_display, None])
return history_list, user_turn_for_api # Return updated history and the API formatted current message
# The bot function that calls `respond` generator
def call_bot_responder(history_list_for_display, current_user_api_content, sys_msg, max_tok, temp, top_p_val, freq_pen, seed_val, prov, api_key_val, cust_model, _search, sel_model, mcp_on, active_servs, mcp_inter_mode):
if not current_user_api_content and not (history_list_for_display and history_list_for_display[-1][0]):
print("Bot called with no current message and no history, skipping.")
yield history_list_for_display # No change
return
# Reconstruct API history from display history
# `respond` expects history as list of [user_api_content, assistant_text_content]
# The current `history_list_for_display` is [user_display, assistant_text]
# This reconstruction is tricky because display != api format.
# For simplicity, we'll pass only the text part of history to `respond` for now,
# and the full current_user_api_content for the current message.
# A more robust solution would store API history separately.
# Simplified history for `respond` (text only from past turns)
# The `respond` function itself needs to be robust to handle this.
# Let's adjust `respond` to take `message` (current API content) and `image_files` (current files)
# and `history` (past turns, which we'll simplify here).
# The `respond` function is already structured to take `message` (text) and `image_files`
# The `current_user_api_content` is what we need to pass as `message` (if text) or `image_files`
current_message_text = ""
current_image_paths = []
if isinstance(current_user_api_content, list): # Multimodal
for part in current_user_api_content:
if part["type"] == "text":
current_message_text = part["text"]
elif part["type"] == "image_url":
# We can't easily get back the path from base64 for `respond`'s current design
# This indicates a slight mismatch. `respond` expects paths for current images.
# For now, let's assume `respond` can handle base64 if passed correctly.
# Or, we modify `handle_user_input` to also pass original paths if needed by `respond`.
# Let's assume `respond`'s `image_files` param can take base64 strings for now.
# This is a simplification.
# The `encode_image` in `respond` expects paths.
# For now, we'll pass None for image_files if it's already in current_user_api_content.
# This part needs careful review of how `respond` handles current images.
# The `respond` function's `image_files` parameter is for new uploads.
# If `current_user_api_content` already has encoded images, `respond` should use that.
# The `respond` function's first two args are `message` (text) and `image_files` (paths).
# We need to extract these from `current_user_api_content`.
pass # Images are part of `current_user_api_content` which is passed to `messages_for_api`
elif isinstance(current_user_api_content, str): # Text only
current_message_text = current_user_api_content
# Simplified history for `respond` (text from display)
# `respond` will reconstruct its own API history.
simplified_past_history = []
if len(history_list_for_display) > 1: # Exclude current turn
for user_disp, assistant_text in history_list_for_display[:-1]:
# Extract text from user_disp for simplified history
user_text_for_hist = user_disp
if isinstance(user_disp, str) and "<img src" in user_disp : # Basic check if it was image display
# Try to find text part if any, otherwise empty
lines = user_disp.splitlines()
text_lines = [line for line in lines if not line.strip().startswith("<img")]
user_text_for_hist = "\n".join(text_lines).strip() if text_lines else ""
simplified_past_history.append([user_text_for_hist, assistant_text])
# The `respond` function's first argument is `message` (current text)
# and `image_files` (current image paths).
# We need to extract these from `current_user_api_content` if it was prepared by `handle_user_input`.
# For now, let's assume `respond` will get the full `current_user_api_content` via `messages_for_api`.
# The first two args of `respond` are for the *current* turn's text and image paths.
# Let's get current text and image paths from `current_user_api_content`
# This is slightly redundant as `respond` also reconstructs this, but for clarity:
_current_text_for_respond = ""
_current_image_paths_for_respond = [] # `respond` expects paths
if isinstance(current_user_api_content, list):
for item in current_user_api_content:
if item['type'] == 'text':
_current_text_for_respond = item['text']
# We can't get paths back from base64 easily.
# This highlights that `respond` needs to be able to take already processed multimodal content.
# For now, we'll assume `respond` internally uses the `messages_for_api` which has the full content.
# So, we can pass `_current_text_for_respond` and `None` for image_files if images are already in API format.
bot_response_stream = respond(
message=_current_text_for_respond, # Current text
image_files=None, # Assume images are handled by messages_for_api construction in respond
history=simplified_past_history, # Past turns
system_message=sys_msg,
max_tokens=max_tok,
temperature=temp,
top_p=top_p_val,
frequency_penalty=freq_pen,
seed=seed_val,
provider=prov,
custom_api_key=api_key_val,
custom_model=cust_model,
model_search_term="", # Not directly used by respond
selected_model=sel_model,
mcp_enabled=mcp_on,
active_mcp_servers=active_servs,
mcp_interaction_mode=mcp_inter_mode
)
for response_chunk in bot_response_stream:
history_list_for_display[-1][1] = response_chunk
yield history_list_for_display
# This state will hold the API-formatted content of the current user message
current_api_message_state = gr.State(None)
msg.submit(
handle_user_input,
[msg, chatbot], # chatbot here is the history_list
[chatbot, current_api_message_state] # Update history display and current_api_message_state
).then(
call_bot_responder,
[chatbot, current_api_message_state, system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box,
model_search_box, featured_model_radio, mcp_enabled_checkbox, active_mcp_servers, mcp_mode],
[chatbot] # Update chatbot display with streaming response
).then(
lambda: gr.MultimodalTextbox(value={"text": "", "files": []}), # Clear MultimodalTextbox
None,
[msg]
)
mcp_connect_button.click(
connect_mcp_server_ui_update,
[mcp_server_url, mcp_server_name],
[mcp_status, active_mcp_servers]
)
model_search_box.change(fn=filter_models_ui_update, inputs=model_search_box, outputs=featured_model_radio)
featured_model_radio.change(fn=set_custom_model_from_radio_ui_update, inputs=featured_model_radio, outputs=custom_model_box)
def validate_provider_ui_update(api_key, current_provider):
if not api_key.strip() and current_provider != "hf-inference":
gr.Info("No API key provided. Defaulting to 'hf-inference' provider.")
return gr.Radio(value="hf-inference") # Update provider_radio
return gr.Radio(value=current_provider) # No change needed or keep current
byok_textbox.change(fn=validate_provider_ui_update, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
provider_radio.change(fn=validate_provider_ui_update, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.queue().launch(show_api=False, debug=False) # mcp_server=False as this is a client |