File size: 23,252 Bytes
cb919f0
4db9e4f
c5a20a4
ea82e64
cb919f0
 
 
 
4db9e4f
 
 
8d2c697
cb919f0
717cd1f
cb919f0
4db9e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81286e1
717cd1f
 
 
81286e1
 
 
717cd1f
 
 
 
 
81286e1
717cd1f
 
81286e1
717cd1f
81286e1
 
 
717cd1f
81286e1
717cd1f
81286e1
717cd1f
81286e1
 
 
 
 
cb919f0
717cd1f
a7fbaae
717cd1f
 
 
 
 
 
 
 
 
 
 
a7fbaae
cb919f0
717cd1f
 
4db9e4f
717cd1f
 
 
 
 
 
 
 
 
4db9e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
717cd1f
81286e1
717cd1f
 
 
 
109f11f
4db9e4f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7fbaae
 
4db9e4f
 
 
 
 
a7fbaae
4db9e4f
 
 
717cd1f
 
 
81286e1
717cd1f
4db9e4f
 
81286e1
4db9e4f
81286e1
4db9e4f
 
 
 
 
 
 
a7fbaae
4db9e4f
8d2c697
4db9e4f
 
 
 
 
 
 
 
 
 
8d2c697
4db9e4f
717cd1f
4db9e4f
 
 
a7fbaae
4db9e4f
6f66243
a7fbaae
 
 
 
 
81286e1
 
717cd1f
a7fbaae
cb919f0
81286e1
 
4db9e4f
8d2c697
4db9e4f
cb919f0
717cd1f
81286e1
a7fbaae
 
4db9e4f
a7fbaae
 
 
 
 
 
 
717cd1f
a7fbaae
717cd1f
a7fbaae
717cd1f
4db9e4f
717cd1f
 
81286e1
 
a7fbaae
cb919f0
dc27384
a7fbaae
 
 
4db9e4f
a7fbaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc27384
a7fbaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4db9e4f
 
a7fbaae
 
 
 
 
 
 
4db9e4f
a7fbaae
 
6f66243
a7fbaae
 
 
 
 
 
81286e1
a7fbaae
4db9e4f
717cd1f
a7fbaae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4db9e4f
a7fbaae
 
 
 
 
 
717cd1f
a7fbaae
 
dc27384
a7fbaae
 
717cd1f
 
 
4db9e4f
 
dc27384
4db9e4f
 
a7fbaae
4db9e4f
dc27384
a7fbaae
4db9e4f
 
717cd1f
4db9e4f
 
717cd1f
a7fbaae
4db9e4f
 
8d2c697
4db9e4f
 
 
8d2c697
4db9e4f
8d2c697
4db9e4f
 
 
 
 
 
 
 
 
 
 
 
 
8d2c697
a7fbaae
 
4db9e4f
 
 
8d2c697
 
 
4db9e4f
 
 
8d2c697
4db9e4f
8d2c697
4db9e4f
8d2c697
4db9e4f
 
 
 
 
8d2c697
4db9e4f
 
 
 
 
 
 
 
 
 
8d2c697
4db9e4f
8d2c697
 
 
717cd1f
4db9e4f
 
 
 
 
 
 
717cd1f
4db9e4f
a7fbaae
717cd1f
4db9e4f
717cd1f
a7fbaae
717cd1f
 
a7fbaae
 
 
 
 
717cd1f
a7fbaae
dc27384
4db9e4f
a7fbaae
4db9e4f
a7fbaae
4db9e4f
a7fbaae
 
 
 
 
 
 
 
 
 
dc27384
a7fbaae
 
 
 
 
 
 
cb919f0
717cd1f
cb919f0
 
717cd1f
4db9e4f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json
import base64
from PIL import Image
import io

# Import smolagents components
from smolagents import CodeAgent, Tool
from smolagents.models import InferenceClientModel as SmolInferenceClientModel # Alias to avoid conflict

ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

# --- Smolagents Setup for Image Generation ---
print("Initializing smolagents components for image generation...")
try:
    image_generation_tool = Tool.from_space(
        "black-forest-labs/FLUX.1-schnell", # The Space ID of the image generation tool
        name="image_generator",
        description="Generates an image from a textual prompt. Use this tool if the user asks to 'generate an image of X', 'draw X', 'create a picture of X', or similar requests for visual content based on a description.",
        # Ensure the HF_TOKEN is available to gradio-client if the space is private or requires auth
        token=ACCESS_TOKEN if ACCESS_TOKEN and ACCESS_TOKEN.strip() != "" else None 
    )
    print("Image generation tool loaded successfully.")
    
    # Initialize a model for the CodeAgent. This can be a simpler/faster model
    # as it's mainly for orchestrating the tool call.
    # Using a default InferenceClientModel from smolagents
    smol_agent_model = SmolInferenceClientModel(token=ACCESS_TOKEN if ACCESS_TOKEN and ACCESS_TOKEN.strip() != "" else None)
    print(f"Smolagent model initialized with: {smol_agent_model.model_id if hasattr(smol_agent_model, 'model_id') else 'default'}")
    
    image_agent = CodeAgent(
        tools=[image_generation_tool], 
        model=smol_agent_model,
        verbosity_level=1 # Set to 0 for less verbose agent logging, 1 for info, 2 for debug
    )
    print("Image generation agent initialized successfully.")
except Exception as e:
    print(f"Error initializing smolagents components: {e}")
    image_agent = None
# --- End Smolagents Setup ---

# Function to encode image to base64
def encode_image(image_path):
    if not image_path:
        print("No image path provided")
        return None
    
    try:
        print(f"Encoding image from path: {image_path}")
        
        # If it's already a PIL Image
        if isinstance(image_path, Image.Image):
            image = image_path
        else:
            # Try to open the image file
            image = Image.open(image_path)
        
        # Convert to RGB if image has an alpha channel (RGBA)
        if image.mode == 'RGBA':
            image = image.convert('RGB')
        
        # Encode to base64
        buffered = io.BytesIO()
        image.save(buffered, format="JPEG")
        img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
        print("Image encoded successfully")
        return img_str
    except Exception as e:
        print(f"Error encoding image: {e}")
        return None

def respond(
    message,
    image_files,  # Changed parameter name and structure
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    provider,
    custom_api_key,
    custom_model,    
    model_search_term,
    selected_model
):
    print(f"Received message: {message}")
    print(f"Received {len(image_files) if image_files else 0} images")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
    print(f"Selected provider: {provider}")         
    print(f"Custom API Key provided: {bool(custom_api_key.strip())}")
    print(f"Selected model (custom_model): {custom_model}")  
    print(f"Model search term: {model_search_term}")
    print(f"Selected model from radio: {selected_model}")

    # --- Agent-based Image Generation ---
    if message.startswith("/generate_image"):
        if image_agent is None:
            yield "Image generation agent is not initialized. Please check server logs."
            return

        prompt_for_agent = message.replace("/generate_image", "").strip()
        if not prompt_for_agent:
            yield "Please provide a prompt for image generation. Usage: /generate_image <your prompt>"
            return

        print(f"Image generation requested with prompt: {prompt_for_agent}")
        try:
            # Agent run is blocking and returns the final result
            # Ensure the image_agent's model also has a token if needed for its operations (though it's for orchestration)
            agent_response = image_agent.run(prompt_for_agent)
            
            if isinstance(agent_response, str) and agent_response.lower().startswith("error"): 
                yield f"Agent error: {agent_response}"
            elif hasattr(agent_response, 'to_string'): # Check if it's an AgentImage or similar
                image_path = agent_response.to_string() # This is a local path to the generated image
                print(f"Agent returned image path: {image_path}")
                # Gradio's chatbot can display images if the content is a file path string
                # or a tuple (filepath, alt_text)
                yield image_path
            else:
                yield f"Agent returned an unexpected response: {str(agent_response)}"
            return
        except Exception as e:
            print(f"Error running image agent: {e}")
            yield f"Error generating image: {str(e)}"
            return
    # --- End Agent-based Image Generation ---

    # Determine which token to use for text generation
    token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
    
    if custom_api_key.strip() != "":
        print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
    else:
        print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
    
    # Initialize the Inference Client with the provider and appropriate token
    client = InferenceClient(token=token_to_use, provider=provider)
    print(f"Hugging Face Inference Client initialized with {provider} provider for text generation.")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None

    # Create multimodal content if images are present
    if image_files and len(image_files) > 0:
        user_content = []
        if message and message.strip():
            user_content.append({
                "type": "text",
                "text": message
            })
        for img_path in image_files: # Assuming image_files contains paths from MultimodalTextbox
            if img_path is not None:
                try:
                    encoded_image = encode_image(img_path) # img_path is already a path from MultimodalTextbox
                    if encoded_image:
                        user_content.append({
                            "type": "image_url",
                            "image_url": {
                                "url": f"data:image/jpeg;base64,{encoded_image}"
                            }
                        })
                except Exception as e:
                    print(f"Error encoding image: {e}")
    else:
        # Text-only message
        user_content = message

    # Prepare messages in the format expected by the API
    messages = [{"role": "system", "content": system_message}]
    print("Initial messages array constructed.")

    # Add conversation history to the context
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        
        # Handle user messages (could be text or image markdown)
        if user_part:
            if isinstance(user_part, str) and user_part.startswith("![Image]("):
                # This is an image path from a previous agent generation
                # or a user upload represented as markdown
                history_image_path = user_part.replace("![Image](", "").replace(")", "")
                encoded_history_image = encode_image(history_image_path)
                if encoded_history_image:
                     messages.append({"role": "user", "content": [{
                        "type": "image_url",
                        "image_url": {"url": f"data:image/jpeg;base64,{encoded_history_image}"}
                    }]})
            elif isinstance(user_part, tuple) and len(user_part) == 2: # Multimodal input from user
                history_content_list = []
                if user_part[0]: # Text part
                    history_content_list.append({"type": "text", "text": user_part[0]})
                for img_hist_path in user_part[1]: # List of image paths
                    encoded_img_hist = encode_image(img_hist_path)
                    if encoded_img_hist:
                        history_content_list.append({
                            "type": "image_url",
                            "image_url": {"url": f"data:image/jpeg;base64,{encoded_img_hist}"}
                        })
                if history_content_list:
                    messages.append({"role": "user", "content": history_content_list})
            else: # Regular text message
                messages.append({"role": "user", "content": user_part})
            print(f"Added user message to context (type: {type(user_part)})")
        
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})
            print(f"Added assistant message to context: {assistant_part}")

    # Append the latest user message
    messages.append({"role": "user", "content": user_content})
    print(f"Latest user message appended (content type: {type(user_content)})")

    # Determine which model to use, prioritizing custom_model if provided
    model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
    print(f"Model selected for inference: {model_to_use}")

    # Start with an empty string to build the response as tokens stream in
    response = ""
    print(f"Sending request to {provider} provider.")

    # Prepare parameters for the chat completion request
    parameters = {
        "max_tokens": max_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "frequency_penalty": frequency_penalty,
    }
    
    if seed is not None:
        parameters["seed"] = seed

    # Use the InferenceClient for making the request
    try:
        # Create a generator for the streaming response
        stream = client.chat_completion(
            model=model_to_use,
            messages=messages,
            stream=True,
            **parameters
        )
        
        print("Received tokens: ", end="", flush=True)
        
        # Process the streaming response
        for chunk in stream:
            if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
                # Extract the content from the response
                if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
                    token_text = chunk.choices[0].delta.content
                    if token_text:
                        print(token_text, end="", flush=True)
                        response += token_text
                        yield response
        
        print()
    except Exception as e:
        print(f"Error during inference: {e}")
        response += f"\nError: {str(e)}"
        yield response

    print("Completed response generation.")

# Function to validate provider selection based on BYOK
def validate_provider(api_key, provider):
    if not api_key.strip() and provider != "hf-inference":
        return gr.update(value="hf-inference")
    return gr.update(value=provider)

# GRADIO UI
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
    # Create the chatbot component
    chatbot = gr.Chatbot(
        height=600, 
        show_copy_button=True, 
        placeholder="Select a model and begin chatting. Use '/generate_image your prompt' to create images.",
        layout="panel",
        show_share_button=True # Added for ease of sharing if deployed
    )
    print("Chatbot interface created.")
    
    # Multimodal textbox for messages (combines text and file uploads)
    msg = gr.MultimodalTextbox(
        placeholder="Type a message or upload images... (e.g., /generate_image a cat wearing a hat)",
        show_label=False,
        container=False,
        scale=12,
        file_types=["image"],
        file_count="multiple",
        sources=["upload"]
    )
    
    # Create accordion for settings
    with gr.Accordion("Settings", open=False):
        # System message
        system_message_box = gr.Textbox(
            value="You are a helpful AI assistant that can understand images and text. If asked to generate an image, use the image_generator tool.", 
            placeholder="You are a helpful assistant.",
            label="System Prompt"
        )
        
        # Generation parameters
        with gr.Row():
            with gr.Column():
                max_tokens_slider = gr.Slider(
                    minimum=1,
                    maximum=4096,
                    value=512,
                    step=1,
                    label="Max tokens"
                )
                
                temperature_slider = gr.Slider(
                    minimum=0.1,
                    maximum=4.0,
                    value=0.7,
                    step=0.1,
                    label="Temperature"
                )
                
                top_p_slider = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.95,
                    step=0.05,
                    label="Top-P"
                )
                
            with gr.Column():
                frequency_penalty_slider = gr.Slider(
                    minimum=-2.0,
                    maximum=2.0,
                    value=0.0,
                    step=0.1,
                    label="Frequency Penalty"
                )
                
                seed_slider = gr.Slider(
                    minimum=-1,
                    maximum=65535,
                    value=-1,
                    step=1,
                    label="Seed (-1 for random)"
                )
        
        # Provider selection
        providers_list = [
            "hf-inference",  # Default Hugging Face Inference
            "cerebras",      # Cerebras provider
            "together",      # Together AI
            "sambanova",     # SambaNova
            "novita",        # Novita AI
            "cohere",        # Cohere
            "fireworks-ai",  # Fireworks AI
            "hyperbolic",    # Hyperbolic
            "nebius",        # Nebius
        ]
        
        provider_radio = gr.Radio(
            choices=providers_list,
            value="hf-inference",
            label="Inference Provider",
        )
        
        # New BYOK textbox
        byok_textbox = gr.Textbox(
            value="",
            label="BYOK (Bring Your Own Key)",
            info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.",
            placeholder="Enter your Hugging Face API token",
            type="password"  # Hide the API key for security
        )
        
        # Custom model box
        custom_model_box = gr.Textbox(
            value="",
            label="Custom Model",
            info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
            placeholder="meta-llama/Llama-3.3-70B-Instruct"
        )
        
        # Model search
        model_search_box = gr.Textbox(
            label="Filter Models",
            placeholder="Search for a featured model...",
            lines=1
        )
        
        # Featured models list
        # Updated to include multimodal models
        models_list = [
            "meta-llama/Llama-3.2-11B-Vision-Instruct",
            "meta-llama/Llama-3.3-70B-Instruct",
            "meta-llama/Llama-3.1-70B-Instruct",
            "meta-llama/Llama-3.0-70B-Instruct",
            "meta-llama/Llama-3.2-3B-Instruct",
            "meta-llama/Llama-3.2-1B-Instruct",
            "meta-llama/Llama-3.1-8B-Instruct",
            "NousResearch/Hermes-3-Llama-3.1-8B",
            "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
            "mistralai/Mistral-Nemo-Instruct-2407",
            "mistralai/Mixtral-8x7B-Instruct-v0.1",
            "mistralai/Mistral-7B-Instruct-v0.3",
            "mistralai/Mistral-7B-Instruct-v0.2",
            "Qwen/Qwen3-235B-A22B",
            "Qwen/Qwen3-32B",
            "Qwen/Qwen2.5-72B-Instruct",
            "Qwen/Qwen2.5-3B-Instruct",
            "Qwen/Qwen2.5-0.5B-Instruct",
            "Qwen/QwQ-32B",
            "Qwen/Qwen2.5-Coder-32B-Instruct",
            "microsoft/Phi-3.5-mini-instruct",
            "microsoft/Phi-3-mini-128k-instruct",
            "microsoft/Phi-3-mini-4k-instruct",
        ]

        featured_model_radio = gr.Radio(
            label="Select a model below",
            choices=models_list,
            value="meta-llama/Llama-3.2-11B-Vision-Instruct",  # Default to a multimodal model
            interactive=True
        )
        
        gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")

    # Chat history state
    chat_history = gr.State([])
    
    # Function to filter models
    def filter_models(search_term):
        print(f"Filtering models with search term: {search_term}")
        filtered = [m for m in models_list if search_term.lower() in m.lower()]
        print(f"Filtered models: {filtered}")
        return gr.update(choices=filtered if filtered else models_list, value=filtered[0] if filtered else models_list[0])


    # Function to set custom model from radio
    def set_custom_model_from_radio(selected):
        print(f"Featured model selected: {selected}")
        return selected

    # Function for the chat interface
    def user(user_message_obj, history):
        print(f"User message object received: {user_message_obj}")
        
        text_content = user_message_obj.get("text", "").strip()
        files = user_message_obj.get("files", []) # files is a list of temp file paths
        
        if not text_content and not files:
            print("Empty message (no text, no files), skipping history update.")
            return history # Or raise gr.Error("Please enter a message or upload an image.")

        # Represent uploaded images in history using markdown syntax for local paths
        # For multimodal models, the actual file path from 'files' will be used in 'respond'
        display_message_parts = []
        if text_content:
            display_message_parts.append(text_content)
        
        processed_files_for_history = []
        if files:
            for file_path_obj in files:
                # Gradio's MultimodalTextbox provides file objects with a .name attribute for the path
                file_path = file_path_obj.name if hasattr(file_path_obj, 'name') else str(file_path_obj)
                display_message_parts.append(f"![Uploaded Image]({file_path})")
                processed_files_for_history.append(file_path) # Store the actual path for 'respond'

        # For history, we store the text and a list of file paths
        # The 'respond' function will then re-encode these for the API
        history_entry_user = (text_content, processed_files_for_history)
        history.append([history_entry_user, None])
        print(f"History updated with user input: {history_entry_user}")
        return history
    
    # Define bot response function
    def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model):
        if not history or len(history) == 0 or history[-1][0] is None:
            print("No user message in history to process for bot.")
            yield history
            return

        user_input_tuple = history[-1][0] # This is now (text, [file_paths])
        text_message_from_history = user_input_tuple[0]
        image_files_from_history = user_input_tuple[1]

        print(f"Bot processing: text='{text_message_from_history}', images={image_files_from_history}")
        
        history[-1][1] = ""
        
        # Pass text and image file paths to respond function
        for response_chunk in respond(
            message=text_message_from_history,
            image_files=image_files_from_history, 
            history=history[:-1], # Pass history excluding the current user turn
            system_message=system_msg,
            max_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
            frequency_penalty=freq_penalty,
            seed=seed,
            provider=provider,
            custom_api_key=api_key,
            custom_model=custom_model,
            model_search_term=search_term,
            selected_model=selected_model
        ):
            history[-1][1] = response_chunk
            yield history

    # Event handlers
    msg.submit(
        user,
        [msg, chatbot], # msg is MultimodalTextboxOutput(text=str, files=List[FileData])
        [chatbot],
        queue=False
    ).then(
        bot,
        [chatbot, system_message_box, max_tokens_slider, temperature_slider, top_p_slider, 
         frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, custom_model_box, 
         model_search_box, featured_model_radio],
        [chatbot]
    ).then(
        lambda: gr.update(value={"text": "", "files": []}),  # Clear MultimodalTextbox
        None,
        [msg]
    )
    
    # Connect the model filter to update the radio choices
    model_search_box.change(
        fn=filter_models,
        inputs=model_search_box,
        outputs=featured_model_radio
    )
    print("Model search box change event linked.")

    # Connect the featured model radio to update the custom model box
    featured_model_radio.change(
        fn=set_custom_model_from_radio,
        inputs=featured_model_radio,
        outputs=custom_model_box
    )
    print("Featured model radio button change event linked.")
    
    # Connect the BYOK textbox to validate provider selection
    byok_textbox.change(
        fn=validate_provider,
        inputs=[byok_textbox, provider_radio],
        outputs=provider_radio
    )
    print("BYOK textbox change event linked.")

    # Also validate provider when the radio changes to ensure consistency
    provider_radio.change(
        fn=validate_provider,
        inputs=[byok_textbox, provider_radio],
        outputs=provider_radio
    )
    print("Provider radio button change event linked.")

print("Gradio interface initialized.")

if __name__ == "__main__":
    print("Launching the demo application.")
    demo.launch(show_api=False) # show_api=False for cleaner public interface, True for debugging