File size: 6,843 Bytes
038f313
fab24df
c5a20a4
038f313
880ced6
 
e13eb1b
038f313
a8fc89d
038f313
 
 
 
e13eb1b
038f313
30153c5
038f313
27c8b8d
 
 
038f313
 
 
3a64d68
98674ca
c5a20a4
038f313
e13eb1b
30153c5
e13eb1b
27c8b8d
 
 
 
 
be3f346
f7c4208
52ad57a
 
038f313
30153c5
c5a20a4
27c8b8d
30153c5
 
27c8b8d
30153c5
27c8b8d
30153c5
27c8b8d
 
 
30153c5
c5a20a4
a8fc89d
27c8b8d
 
30153c5
 
 
 
 
 
 
 
27c8b8d
 
a8fc89d
 
542c2ac
f7c4208
a8fc89d
 
 
be3f346
30153c5
 
 
 
 
 
 
a8fc89d
 
30153c5
 
 
 
 
 
 
 
 
a8fc89d
 
 
30153c5
a8fc89d
30153c5
a8fc89d
 
30153c5
 
 
 
 
 
a8fc89d
30153c5
a8fc89d
30153c5
 
 
 
 
 
 
a8fc89d
30153c5
 
 
ff59b6f
 
30153c5
 
ff59b6f
a8fc89d
 
 
 
30153c5
 
a8fc89d
30153c5
 
 
a8fc89d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30153c5
 
 
 
a8fc89d
 
 
30153c5
a8fc89d
 
 
30153c5
 
 
a8fc89d
 
 
30153c5
 
 
a8fc89d
30153c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8fc89d
be3f346
769901b
77298b9
27c8b8d
77298b9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import gradio as gr
from openai import OpenAI
import os

# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")


def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    custom_model
):
    """
    Respond function for ChatInterface.
    """
    print(f"Received message: {message}")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
    print(f"Selected model (custom_model): {custom_model}")

    if seed == -1:
        seed = None

    # Construct the messages array
    messages = [{"role": "system", "content": system_message}]
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        if user_part:
            messages.append({"role": "user", "content": user_part})
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})

    messages.append({"role": "user", "content": message})

    # If user provided a model, use it; else use default
    model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
    response = ""

    for message_chunk in client.chat.completions.create(
        model=model_to_use,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
        frequency_penalty=frequency_penalty,
        seed=seed,
        messages=messages,
    ):
        token_text = message_chunk.choices[0].delta.content
        response += token_text
        yield response


# -------------------------
# GRADIO UI CONFIGURATION
# -------------------------

# Create a Chatbot component
chatbot = gr.Chatbot(
    height=600, 
    show_copy_button=True,
    placeholder="Select a model and begin chatting",
    likeable=True,
    layout="panel"
)

# Create textboxes/sliders for system prompt, tokens, etc.
system_message_box = gr.Textbox(value="", label="System message")
max_tokens_slider = gr.Slider(1, 4096, value=512, step=1, label="Max new tokens")
temperature_slider = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature")
top_p_slider = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-P")
frequency_penalty_slider = gr.Slider(-2.0, 2.0, value=0.0, step=0.1, label="Frequency Penalty")
seed_slider = gr.Slider(-1, 65535, value=-1, step=1, label="Seed (-1 for random)")
custom_model_box = gr.Textbox(value="", label="Custom Model",
                              info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.")

def set_custom_model_from_radio(selected):
    """
    Update the Custom Model textbox when a featured model is selected.
    """
    print(f"Featured model selected: {selected}")
    return selected


# Create a user textbox that we can reference
# This will become our "Message" input inside the ChatInterface
user_textbox = gr.MultimodalTextbox()

# No 'examples' here—because we want to keep the user's parameters unchanged
demo = gr.ChatInterface(
    fn=respond,
    additional_inputs=[
        system_message_box,
        max_tokens_slider,
        temperature_slider,
        top_p_slider,
        frequency_penalty_slider,
        seed_slider,
        custom_model_box
    ],
    fill_height=True,
    chatbot=chatbot,
    textbox=user_textbox,
    multimodal=True,
    concurrency_limit=20,
    theme="Nymbo/Nymbo_Theme",
    # No examples parameter used
    cache_examples=False
)
print("ChatInterface object created.")

with demo:
    # Featured models accordion
    with gr.Accordion("Featured Models", open=False):
        model_search_box = gr.Textbox(
            label="Filter Models",
            placeholder="Search for a featured model...",
            lines=1
        )

        models_list = [
            "meta-llama/Llama-3.3-70B-Instruct",
            "meta-llama/Llama-3.2-3B-Instruct",
            "meta-llama/Llama-3.2-1B-Instruct",
            "meta-llama/Llama-3.1-8B-Instruct",
            "NousResearch/Hermes-3-Llama-3.1-8B",
            "google/gemma-2-27b-it",
            "google/gemma-2-9b-it",
            "google/gemma-2-2b-it",
            "mistralai/Mistral-Nemo-Instruct-2407",
            "mistralai/Mixtral-8x7B-Instruct-v0.1",
            "mistralai/Mistral-7B-Instruct-v0.3",
            "Qwen/Qwen2.5-72B-Instruct",
            "Qwen/QwQ-32B-Preview",
            "PowerInfer/SmallThinker-3B-Preview",
            "HuggingFaceTB/SmolLM2-1.7B-Instruct",
            "TinyLlama/TinyLlama-1.1B-Chat-v1.0",
            "microsoft/Phi-3.5-mini-instruct",
        ]

        featured_model_radio = gr.Radio(
            label="Select a model below",
            choices=models_list,
            value="meta-llama/Llama-3.3-70B-Instruct",
            interactive=True
        )

        def filter_models(search_term):
            filtered = [m for m in models_list if search_term.lower() in m.lower()]
            return gr.update(choices=filtered)

        model_search_box.change(
            fn=filter_models,
            inputs=model_search_box,
            outputs=featured_model_radio
        )

        featured_model_radio.change(
            fn=set_custom_model_from_radio,
            inputs=featured_model_radio,
            outputs=custom_model_box
        )

    # Example Prompts accordion
    with gr.Accordion("Example Prompts", open=False):
        ex1_btn = gr.Button("Example 1: 'Howdy, partner!'")
        ex2_btn = gr.Button("Example 2: 'What's your model name and who trained you?'")
        ex3_btn = gr.Button("Example 3: 'How many R's in Strawberry?'")

        # Helper function that returns an update for user_textbox
        def load_example(example_text):
            return gr.update(value=example_text)

        ex1_btn.click(fn=lambda: load_example("Howdy, partner!"), 
                      inputs=[],
                      outputs=user_textbox)

        ex2_btn.click(fn=lambda: load_example("What's your model name and who trained you?"), 
                      inputs=[],
                      outputs=user_textbox)

        ex3_btn.click(fn=lambda: load_example("How many R's are there in the word Strawberry?"), 
                      inputs=[],
                      outputs=user_textbox)

print("Gradio interface initialized.")

if __name__ == "__main__":
    print("Launching the demo application.")
    demo.launch()