Spaces:
Running
Running
File size: 6,843 Bytes
038f313 fab24df c5a20a4 038f313 880ced6 e13eb1b 038f313 a8fc89d 038f313 e13eb1b 038f313 30153c5 038f313 27c8b8d 038f313 3a64d68 98674ca c5a20a4 038f313 e13eb1b 30153c5 e13eb1b 27c8b8d be3f346 f7c4208 52ad57a 038f313 30153c5 c5a20a4 27c8b8d 30153c5 27c8b8d 30153c5 27c8b8d 30153c5 27c8b8d 30153c5 c5a20a4 a8fc89d 27c8b8d 30153c5 27c8b8d a8fc89d 542c2ac f7c4208 a8fc89d be3f346 30153c5 a8fc89d 30153c5 a8fc89d 30153c5 a8fc89d 30153c5 a8fc89d 30153c5 a8fc89d 30153c5 a8fc89d 30153c5 a8fc89d 30153c5 ff59b6f 30153c5 ff59b6f a8fc89d 30153c5 a8fc89d 30153c5 a8fc89d 30153c5 a8fc89d 30153c5 a8fc89d 30153c5 a8fc89d 30153c5 a8fc89d 30153c5 a8fc89d be3f346 769901b 77298b9 27c8b8d 77298b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model
):
"""
Respond function for ChatInterface.
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected model (custom_model): {custom_model}")
if seed == -1:
seed = None
# Construct the messages array
messages = [{"role": "system", "content": system_message}]
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
messages.append({"role": "user", "content": message})
# If user provided a model, use it; else use default
model_to_use = custom_model.strip() if custom_model.strip() != "" else "meta-llama/Llama-3.3-70B-Instruct"
response = ""
for message_chunk in client.chat.completions.create(
model=model_to_use,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
token_text = message_chunk.choices[0].delta.content
response += token_text
yield response
# -------------------------
# GRADIO UI CONFIGURATION
# -------------------------
# Create a Chatbot component
chatbot = gr.Chatbot(
height=600,
show_copy_button=True,
placeholder="Select a model and begin chatting",
likeable=True,
layout="panel"
)
# Create textboxes/sliders for system prompt, tokens, etc.
system_message_box = gr.Textbox(value="", label="System message")
max_tokens_slider = gr.Slider(1, 4096, value=512, step=1, label="Max new tokens")
temperature_slider = gr.Slider(0.1, 4.0, value=0.7, step=0.1, label="Temperature")
top_p_slider = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-P")
frequency_penalty_slider = gr.Slider(-2.0, 2.0, value=0.0, step=0.1, label="Frequency Penalty")
seed_slider = gr.Slider(-1, 65535, value=-1, step=1, label="Seed (-1 for random)")
custom_model_box = gr.Textbox(value="", label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.")
def set_custom_model_from_radio(selected):
"""
Update the Custom Model textbox when a featured model is selected.
"""
print(f"Featured model selected: {selected}")
return selected
# Create a user textbox that we can reference
# This will become our "Message" input inside the ChatInterface
user_textbox = gr.MultimodalTextbox()
# No 'examples' here—because we want to keep the user's parameters unchanged
demo = gr.ChatInterface(
fn=respond,
additional_inputs=[
system_message_box,
max_tokens_slider,
temperature_slider,
top_p_slider,
frequency_penalty_slider,
seed_slider,
custom_model_box
],
fill_height=True,
chatbot=chatbot,
textbox=user_textbox,
multimodal=True,
concurrency_limit=20,
theme="Nymbo/Nymbo_Theme",
# No examples parameter used
cache_examples=False
)
print("ChatInterface object created.")
with demo:
# Featured models accordion
with gr.Accordion("Featured Models", open=False):
model_search_box = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1
)
models_list = [
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"NousResearch/Hermes-3-Llama-3.1-8B",
"google/gemma-2-27b-it",
"google/gemma-2-9b-it",
"google/gemma-2-2b-it",
"mistralai/Mistral-Nemo-Instruct-2407",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3",
"Qwen/Qwen2.5-72B-Instruct",
"Qwen/QwQ-32B-Preview",
"PowerInfer/SmallThinker-3B-Preview",
"HuggingFaceTB/SmolLM2-1.7B-Instruct",
"TinyLlama/TinyLlama-1.1B-Chat-v1.0",
"microsoft/Phi-3.5-mini-instruct",
]
featured_model_radio = gr.Radio(
label="Select a model below",
choices=models_list,
value="meta-llama/Llama-3.3-70B-Instruct",
interactive=True
)
def filter_models(search_term):
filtered = [m for m in models_list if search_term.lower() in m.lower()]
return gr.update(choices=filtered)
model_search_box.change(
fn=filter_models,
inputs=model_search_box,
outputs=featured_model_radio
)
featured_model_radio.change(
fn=set_custom_model_from_radio,
inputs=featured_model_radio,
outputs=custom_model_box
)
# Example Prompts accordion
with gr.Accordion("Example Prompts", open=False):
ex1_btn = gr.Button("Example 1: 'Howdy, partner!'")
ex2_btn = gr.Button("Example 2: 'What's your model name and who trained you?'")
ex3_btn = gr.Button("Example 3: 'How many R's in Strawberry?'")
# Helper function that returns an update for user_textbox
def load_example(example_text):
return gr.update(value=example_text)
ex1_btn.click(fn=lambda: load_example("Howdy, partner!"),
inputs=[],
outputs=user_textbox)
ex2_btn.click(fn=lambda: load_example("What's your model name and who trained you?"),
inputs=[],
outputs=user_textbox)
ex3_btn.click(fn=lambda: load_example("How many R's are there in the word Strawberry?"),
inputs=[],
outputs=user_textbox)
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch() |