Spaces:
Running
Running
File size: 5,168 Bytes
038f313 77298b9 7de1759 038f313 880ced6 e13eb1b 038f313 e13eb1b 038f313 e13eb1b 038f313 27c8b8d 038f313 3a64d68 98674ca 27c8b8d 038f313 e13eb1b 27c8b8d e13eb1b 27c8b8d 7de1759 27c8b8d f7c4208 27c8b8d 52ad57a 038f313 27c8b8d 77298b9 27c8b8d 542c2ac e13eb1b f7c4208 27c8b8d 77298b9 7de1759 27c8b8d e7683ca 8696822 27c8b8d 77298b9 27c8b8d 7de1759 27c8b8d 10ffb1d 27c8b8d e7683ca 77298b9 27c8b8d 77298b9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 |
import gradio as gr
from openai import OpenAI
import os
# Retrieve the access token from the environment variable
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
# Initialize the OpenAI client with the Hugging Face Inference API endpoint
client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
print("OpenAI client initialized.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
custom_model,
selected_model
):
"""
Handles the chatbot response generation.
"""
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Custom model: {custom_model}")
print(f"Selected model: {selected_model}")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Construct the messages array required by the API
messages = [{"role": "system", "content": system_message}]
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
# Determine which model to use
model_to_use = (
custom_model.strip()
if custom_model.strip() != ""
else selected_model.strip()
)
print(f"Model selected for inference: {model_to_use}")
# Start with an empty string to build the response as tokens stream in
response = ""
print("Sending request to OpenAI API.")
# Make the streaming request to the HF Inference API via openai-like client
for message_chunk in client.chat.completions.create(
model=model_to_use,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
frequency_penalty=frequency_penalty,
seed=seed,
messages=messages,
):
# Extract the token text from the response chunk
token_text = message_chunk.choices[0].delta.content
print(f"Received token: {token_text}")
response += token_text
yield response
print("Completed response generation.")
# Predefined list of placeholder models for the Featured Models accordion
models_list = [
"meta-llama/Llama-3.3-70B-Instruct",
"bigscience/bloom-7b1",
"EleutherAI/gpt-neo-2.7B",
"OpenAssistant/oasst-sft-4-pythia-12b-epoch-3.5",
"HuggingFace/distilgpt2",
]
# Function to filter models based on search input
def filter_models(search_term):
filtered_models = [m for m in models_list if search_term.lower() in m.lower()]
return gr.update(choices=filtered_models)
# Create a Chatbot component with a specified height
chatbot = gr.Chatbot(height=600)
print("Chatbot interface created.")
# Create the Gradio ChatInterface
# Added "Featured Models" accordion and integrated filtering
demo = gr.Interface(
fn=respond,
inputs=[
gr.Textbox(value="", label="System message"),
gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P"),
gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
),
gr.Slider(
minimum=-1,
maximum=65535, # Arbitrary upper limit for demonstration
value=-1,
step=1,
label="Seed (-1 for random)"
),
gr.Textbox(
value="",
label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. This will override the default model if not empty.",
),
# Add Featured Models accordion
gr.Accordion("Featured Models", open=True, children=[
gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1).change(
filter_models, inputs=["value"], outputs="choices"
),
gr.Radio(
label="Select a featured model",
value="meta-llama/Llama-3.3-70B-Instruct",
choices=models_list,
elem_id="model-radio",
)
]),
],
outputs=gr.Chatbot(height=600),
theme="Nymbo/Nymbo_Theme",
)
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch() |