Spaces:
Running
Running
File size: 25,995 Bytes
cb919f0 7ab8722 c5a20a4 0d8a414 cb919f0 0d8a414 cb919f0 7ab8722 0d8a414 81286e1 0d8a414 717cd1f 0d8a414 7ab8722 0d8a414 81286e1 0d8a414 81286e1 7ab8722 81286e1 0d8a414 81286e1 cb919f0 7ab8722 c3b8601 7ab8722 717cd1f 7ab8722 0d8a414 7ab8722 cb919f0 0d8a414 7ab8722 c3b8601 0d8a414 7ab8722 0d8a414 7ab8722 0d8a414 c3b8601 0d8a414 c3b8601 0d8a414 7ab8722 0d8a414 81b2233 0d8a414 7ab8722 81b2233 7ab8722 0d8a414 7ab8722 0d8a414 c3b8601 0d8a414 c3b8601 0d8a414 717cd1f 0d8a414 717cd1f cb919f0 81286e1 0d8a414 c3b8601 0d8a414 cb919f0 81286e1 a7fbaae 4fa442d a7fbaae 0d8a414 a7fbaae 0d8a414 a7fbaae 717cd1f 7ab8722 81286e1 cb919f0 dc27384 0d8a414 dc27384 0d8a414 6f66243 c3b8601 7ab8722 c3b8601 0d8a414 7ab8722 0d8a414 7ab8722 c3b8601 7ab8722 717cd1f 0d8a414 a7fbaae 7ab8722 c3b8601 7ab8722 0d8a414 a7fbaae 0d8a414 7ab8722 0d8a414 7ab8722 0d8a414 c3b8601 0d8a414 c3b8601 0d8a414 c3b8601 0d8a414 7ab8722 0d8a414 7ab8722 0d8a414 4db9e4f 0d8a414 717cd1f 0d8a414 717cd1f 0d8a414 7ab8722 0d8a414 7ab8722 0d8a414 c3b8601 cb919f0 0d8a414 cb919f0 0d8a414 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json # Added for debug printing payloads
import base64
from PIL import Image
import io
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print(f"Access token from HF_TOKEN env var loaded. Is it None? {ACCESS_TOKEN is None}. Length if not None: {len(ACCESS_TOKEN) if ACCESS_TOKEN else 'N/A'}")
# Function to encode image to base64
def encode_image(image_path_or_pil):
if not image_path_or_pil:
print("No image path or PIL Image provided to encode_image")
return None
try:
# print(f"Encoding image. Input type: {type(image_path_or_pil)}") # Debug
if isinstance(image_path_or_pil, Image.Image):
image = image_path_or_pil
# print("Input is already a PIL Image.")
elif isinstance(image_path_or_pil, str):
# print(f"Input is a path string: {image_path_or_pil}")
if not os.path.exists(image_path_or_pil):
print(f"Error: Image path does not exist: {image_path_or_pil}")
return None
image = Image.open(image_path_or_pil)
else:
print(f"Error: Unsupported type for encode_image: {type(image_path_or_pil)}")
return None
if image.mode == 'RGBA':
# print("Converting RGBA image to RGB.")
image = image.convert('RGB')
buffered = io.BytesIO()
image.save(buffered, format="JPEG")
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
# print("Image encoded successfully to base64.")
return img_str
except Exception as e:
print(f"Error encoding image: {e}")
return None
def respond(
message,
image_files,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
provider,
custom_api_key, # This is the value from byok_textbox
custom_model,
model_search_term,
selected_model
):
print(f"--- New Respond Call ---")
print(f"Received message: '{message}'")
print(f"Received {len(image_files) if image_files else 0} image files.")
# print(f"History length: {len(history)}") # History can be verbose
print(f"System message: '{system_message}'")
print(f"Generation Params: MaxTokens={max_tokens}, Temp={temperature}, TopP={top_p}, FreqPenalty={frequency_penalty}, Seed={seed}")
print(f"Selected provider: '{provider}'")
# Explicitly show the raw custom_api_key received
raw_key_type = type(custom_api_key)
raw_key_len = len(custom_api_key) if isinstance(custom_api_key, str) else 'N/A (not a string)'
print(f"Raw custom_api_key from UI: type={raw_key_type}, length={raw_key_len}")
if isinstance(custom_api_key, str) and len(custom_api_key) > 0:
print(f"Raw custom_api_key (masked): '{custom_api_key[:4]}...{custom_api_key[-4:]}'" if len(custom_api_key) > 8 else custom_api_key)
token_to_use = None
effective_custom_key = ""
if custom_api_key and isinstance(custom_api_key, str): # Ensure it's a string and not None
effective_custom_key = custom_api_key.strip()
if effective_custom_key: # True if string is not empty after stripping
token_to_use = effective_custom_key
print(f"TOKEN SELECTION: USING CUSTOM API KEY (BYOK). Length: {len(token_to_use)}")
if ACCESS_TOKEN and token_to_use == ACCESS_TOKEN:
print("INFO: Custom key is identical to the environment HF_TOKEN.")
else:
token_to_use = ACCESS_TOKEN # This will be None if HF_TOKEN is not set or empty
if token_to_use:
print(f"TOKEN SELECTION: USING DEFAULT API KEY (HF_TOKEN from env). Length: {len(token_to_use)}")
else:
print("TOKEN SELECTION: DEFAULT API KEY (HF_TOKEN from env) IS NOT SET or EMPTY. Custom key was also empty.")
if not token_to_use:
print("CRITICAL WARNING: No API token determined (neither custom nor default was usable/provided). Inference will likely fail or use public access if supported by model/provider.")
# InferenceClient will handle token=None by trying its own env var lookup or failing.
else:
# For debugging, print a masked version of the token being finally used
if isinstance(token_to_use, str) and len(token_to_use) > 8:
print(f"FINAL TOKEN for InferenceClient: '{token_to_use[:4]}...{token_to_use[-4:]}' (masked)")
elif isinstance(token_to_use, str):
print(f"FINAL TOKEN for InferenceClient: '{token_to_use}' (short token)")
else: # Should not happen if logic above is correct and token_to_use is string or None
print(f"FINAL TOKEN for InferenceClient: {token_to_use} (not a string or None, unusual!)")
# Initialize the Inference Client with the provider and appropriate token
client = InferenceClient(token=token_to_use, provider=provider)
print(f"Hugging Face Inference Client initialized with provider: '{provider}'.")
if seed == -1: # Convert seed to None if -1 (meaning random)
seed = None
# Prepare user_content (current message with text and/or images)
user_content_parts = []
if message and message.strip():
user_content_parts.append({"type": "text", "text": message})
if image_files and len(image_files) > 0:
for img_file_path in image_files:
if img_file_path: # img_file_path is a string path from Gradio MultimodalTextbox
encoded_image = encode_image(img_file_path)
if encoded_image:
user_content_parts.append({
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{encoded_image}"}
})
else:
print(f"Warning: Failed to encode image for current message: {img_file_path}")
# Determine final user_content structure
if not user_content_parts: # No text and no images
print("Warning: Current user message is empty (no text, no images).")
# Depending on API, might need to send empty string or handle this case.
# For now, let it proceed; API might error or interpret as empty prompt.
final_user_content = ""
elif len(user_content_parts) == 1 and user_content_parts[0]["type"] == "text":
final_user_content = user_content_parts[0]["text"] # Text-only, pass as string
else:
final_user_content = user_content_parts # Multimodal, pass as list of dicts
# Prepare messages list for the API
messages = [{"role": "system", "content": system_message}]
for hist_user_content, hist_assistant_content in history:
# hist_user_content can be string (text) or tuple (text, [image_paths])
if hist_user_content:
if isinstance(hist_user_content, tuple) and len(hist_user_content) == 2:
# Multimodal history entry: (text, [list_of_image_paths])
hist_text, hist_image_paths = hist_user_content
current_hist_user_parts = []
if hist_text and hist_text.strip():
current_hist_user_parts.append({"type": "text", "text": hist_text})
if hist_image_paths:
for hist_img_path in hist_image_paths:
encoded_hist_img = encode_image(hist_img_path)
if encoded_hist_img:
current_hist_user_parts.append({
"type": "image_url",
"image_url": {"url": f"data:image/jpeg;base64,{encoded_hist_img}"}
})
else:
print(f"Warning: Failed to encode history image: {hist_img_path}")
if current_hist_user_parts: # Only add if there's content
messages.append({"role": "user", "content": current_hist_user_parts})
elif isinstance(hist_user_content, str): # Text-only history entry
messages.append({"role": "user", "content": hist_user_content})
else:
print(f"Warning: Unexpected type for history user content: {type(hist_user_content)}")
if hist_assistant_content:
messages.append({"role": "assistant", "content": hist_assistant_content})
messages.append({"role": "user", "content": final_user_content})
# print(f"Final messages object for API: {json.dumps(messages, indent=2)}") # Very verbose, use for deep debugging
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
print(f"Model selected for inference: '{model_to_use}'")
response_text = ""
print(f"Sending request to provider '{provider}' for model '{model_to_use}'. Streaming enabled.")
parameters = {
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
}
if seed is not None:
parameters["seed"] = seed
try:
stream = client.chat_completion(
model=model_to_use,
messages=messages,
stream=True,
**parameters
)
# print("Streaming response tokens: ", end="", flush=True) # Can be noisy
for chunk in stream:
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
delta = chunk.choices[0].delta
if delta and hasattr(delta, 'content') and delta.content:
token_text = delta.content
# print(token_text, end="", flush=True) # Handled by yield
response_text += token_text
yield response_text
# print("\nStream ended.")
except Exception as e:
error_message = f"{type(e).__name__}: {str(e)}"
print(f"ERROR DURING INFERENCE: {error_message}")
# If it's a client error (4xx), the request body might be relevant
if hasattr(e, 'response') and e.response is not None:
print(f"Error details: Status {e.response.status_code}. Response text: {e.response.text}")
if 400 <= e.response.status_code < 500:
try:
print(f"Offending request messages payload (first 1000 chars): {json.dumps(messages, indent=2)[:1000]}")
except Exception as E:
print(f"Could not dump messages payload: {E}")
response_text += f"\nAn error occurred: {error_message}"
yield response_text
print("Completed response generation for current call.")
# Function to validate provider selection based on BYOK
def validate_provider(api_key, provider_choice): # Renamed provider to provider_choice
# This function's purpose was to force hf-inference if no BYOK for other providers.
# However, InferenceClient handles provider-specific keys or HF token routing.
# For now, let's assume any key might work with any provider and let InferenceClient handle it.
# If a custom key is entered, it *could* be for any provider.
# If no custom key, and ACCESS_TOKEN is used, it's an HF_TOKEN, best for hf-inference or HF-managed providers.
# The current logic doesn't strictly need this validation if we trust InferenceClient.
# Keeping it simple:
# if not api_key.strip() and provider_choice != "hf-inference":
# print(f"No BYOK, but provider '{provider_choice}' selected. Forcing 'hf-inference'.")
# return gr.update(value="hf-inference")
return gr.update(value=provider_choice) # No change for now, allow user selection.
# GRADIO UI
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
chatbot = gr.Chatbot(
height=600,
show_copy_button=True,
placeholder="Select a model, enter your message, and upload images if needed.",
layout="panel",
avatar_images=(None, "https://huggingface.co/chat/huggingchat/logo.svg") # Example bot avatar
)
msg = gr.MultimodalTextbox(
placeholder="Type a message or upload images...",
show_label=False,
container=False,
scale=12, # Ensure this is within a gr.Row() or similar if scale is used effectively
file_types=["image"],
file_count="multiple", # Allows multiple image uploads
sources=["upload"] # Can add "clipboard"
)
with gr.Accordion("Settings", open=False):
system_message_box = gr.Textbox(
value="You are a helpful AI assistant that can understand images and text.",
placeholder="You are a helpful assistant.",
label="System Prompt"
)
with gr.Row():
with gr.Column():
max_tokens_slider = gr.Slider(1, 4096, value=512, step=1, label="Max new tokens")
temperature_slider = gr.Slider(0.1, 2.0, value=0.7, step=0.05, label="Temperature") # Range adjusted
top_p_slider = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-P")
with gr.Column():
frequency_penalty_slider = gr.Slider(-2.0, 2.0, value=0.0, step=0.1, label="Frequency Penalty")
seed_slider = gr.Slider(-1, 65535, value=-1, step=1, label="Seed (-1 for random)")
providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"]
provider_radio = gr.Radio(choices=providers_list, value="hf-inference", label="Inference Provider")
byok_textbox = gr.Textbox(
value="", label="BYOK (Bring Your Own Key)",
info="Enter your API key. For 'hf-inference', use an HF token. For other providers, use their specific key or an HF token if supported.",
placeholder="Enter your API token here", type="password"
)
custom_model_box = gr.Textbox(
value="", label="Custom Model ID / Endpoint",
info="(Optional) Provide a custom model ID (e.g., 'meta-llama/Llama-3-70b-chat-hf') or full endpoint URL. Overrides featured model selection.",
placeholder="org/model-name or full URL"
)
model_search_box = gr.Textbox(label="Filter Featured Models", placeholder="Search...", lines=1)
models_list = [
"meta-llama/Llama-3.2-11B-Vision-Instruct", "meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct", "meta-llama/Llama-3.0-70B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct", "meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct", "NousResearch/Hermes-3-Llama-3.1-8B",
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", "mistralai/Mistral-Nemo-Instruct-2407",
"mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mistral-7B-Instruct-v0.2", "Qwen/Qwen3-235B-A22B", "Qwen/Qwen3-32B",
"Qwen/Qwen2.5-72B-Instruct", "Qwen/Qwen2.5-3B-Instruct", "Qwen/Qwen2.5-0.5B-Instruct",
"Qwen/QwQ-32B", "Qwen/Qwen2.5-Coder-32B-Instruct", "microsoft/Phi-3.5-mini-instruct",
"microsoft/Phi-3-mini-128k-instruct", "microsoft/Phi-3-mini-4k-instruct",
]
featured_model_radio = gr.Radio(
label="Select a Featured Model", choices=models_list,
value="meta-llama/Llama-3.2-11B-Vision-Instruct", interactive=True
)
gr.Markdown("[All Text-to-Text Models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [All Multimodal Models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
# Chat history state (remains gr.State for proper handling by Gradio)
# The `chatbot` component itself manages its display state.
# We need a separate state if we want to manipulate the history structure before passing to API.
# The current `bot` function takes `chatbot` (which is history) directly.
# Revised user function for MultimodalTextbox
# It appends the user's input (text and/or files) to the chatbot history.
# The `bot` function will then process this history.
def handle_user_input(multimodal_input, chat_history_list):
text_input = multimodal_input.get("text", "").strip()
file_inputs = multimodal_input.get("files", []) # List of file paths
# print(f"User input: Text='{text_input}', Files={file_inputs}")
if not text_input and not file_inputs:
# print("User input empty, not adding to history.")
return chat_history_list # No change if input is empty
# For multimodal display in chatbot, we can represent images using Markdown.
# The actual file paths will be used by `respond` for API calls.
# We need to decide how to store this in history for `respond`
# Option 1: Store (text, [paths]) tuple for user turns.
# Option 2: Create separate entries for text and images.
# Let's use Option 1 for structured history, easier for `respond`
# The `chatbot` component can display a text representation.
display_entry_user = ""
if text_input:
display_entry_user += text_input
# For display in chatbot, we can use Markdown for images.
# For passing to `respond` via history, we need the actual paths.
# The `bot` function will unpack this.
# For `chatbot` display:
# If there are images, we can create a text representation.
# For example, just list "<image1> <image2>" or use Markdown if supported for local files.
# Gradio Chatbot displays images if the path is a local temp file path.
user_turn_content_for_api = (text_input, [f.name for f in file_inputs if f] if file_inputs else [])
# For chatbot display:
# Gradio's Chatbot can display images directly if you pass a list like:
# [[(image_path1,), (image_path2,)], None] for an image-only user message
# Or [[text_input, (image_path1,)], None]
# Let's try to prepare for this.
if file_inputs:
# If there's text AND files, Gradio expects text first, then tuples for files.
# e.g., history.append( [ [text_input] + [(file.name,) for file in file_inputs], None] )
# Or, more simply, if Chatbot handles multimodal input display well:
chatbot_user_message = []
if text_input:
chatbot_user_message.append(text_input)
for file_obj in file_inputs:
if file_obj and hasattr(file_obj, 'name'): # file_obj is a TemporaryFileWrapper
chatbot_user_message.append((file_obj.name,)) # Tuple for image path
chat_history_list.append([chatbot_user_message, None])
elif text_input: # Text only
chat_history_list.append([text_input, None])
# The `bot` function will receive `chat_history_list`.
# It needs to reconstruct text and image paths from `chat_history_list[-1][0]`
# to pass to `respond`'s `message` and `image_files` parameters.
return chat_history_list
# Revised bot function to handle history from handle_user_input
def process_bot_response(
current_chat_history, # This is the full history from the chatbot
system_msg, max_tkns, temp, tp_p, freq_pen, sd, prov, api_k, cust_model, srch_term, sel_model
):
if not current_chat_history or not current_chat_history[-1][0]:
print("Bot: History is empty or last user message is empty.")
return current_chat_history # Or yield current_chat_history
last_user_turn_content = current_chat_history[-1][0] # This is what handle_user_input created
# Extract text and image paths from last_user_turn_content
current_message_text = ""
current_image_paths = []
if isinstance(last_user_turn_content, str): # Text-only
current_message_text = last_user_turn_content
elif isinstance(last_user_turn_content, list): # Potentially multimodal from handle_user_input
for item in last_user_turn_content:
if isinstance(item, str):
current_message_text = item # Assumes one text part
elif isinstance(item, tuple) and len(item) > 0 and isinstance(item[0], str):
current_image_paths.append(item[0]) # item[0] is the image path
# print(f"Bot: Extracted for respond - Text='{current_message_text}', Images={current_image_paths}")
# History for `respond` should be all turns *except* the current one.
history_for_api = []
for user_content, assistant_content in current_chat_history[:-1]:
# Reconstruct (text, [paths]) structure for history items if they were multimodal
# This part needs careful handling if history itself contains multimodal user turns
# For simplicity, assuming history user_content is string or already (text, [paths])
# The current `handle_user_input` makes `user_content` a list for multimodal.
# This needs to be harmonized.
# Let's simplify: `respond` will parse history. We just pass it.
# The `respond` function's history processing needs to handle the new format.
# The `respond` function expects history items to be:
# user_part: str OR (text_str, [img_paths_list])
# assistant_part: str
# Let's re-structure history_for_api based on how `handle_user_input` formats it.
# `handle_user_input` stores `chatbot_user_message` which is `[text, (path1,), (path2,)]` or `text`
# `respond` needs to be adapted for this history format if we pass it directly.
# For now, let's adapt the history passed to `respond` to its expected format.
api_hist_user_entry = None
if isinstance(user_content, str): # Simple text history
api_hist_user_entry = user_content
elif isinstance(user_content, list): # Multimodal history from `handle_user_input`
hist_text = ""
hist_paths = []
for item in user_content:
if isinstance(item, str): hist_text = item
elif isinstance(item, tuple): hist_paths.append(item[0])
api_hist_user_entry = (hist_text, hist_paths)
history_for_api.append( (api_hist_user_entry, assistant_content) )
# Call respond with the current message parts and the processed history
# The `respond` function's first two args are `message` (text) and `image_files` (list of paths)
# for the *current* turn.
# Clear the placeholder for bot's response in the last history item
current_chat_history[-1][1] = ""
stream = respond(
current_message_text,
current_image_paths,
history_for_api, # Pass the history *before* the current turn
system_msg, max_tkns, temp, tp_p, freq_pen, sd, prov, api_k, cust_model, srch_term, sel_model
)
for partial_response in stream:
current_chat_history[-1][1] = partial_response
yield current_chat_history
# Event handlers
# 1. User submits message (text and/or files)
# 2. `handle_user_input` updates chatbot history with user's message.
# 3. `process_bot_response` takes this new history, calls API, and streams response back to chatbot.
submit_event = msg.submit(
handle_user_input,
inputs=[msg, chatbot], # Pass current message and full history
outputs=[chatbot], # Update chatbot with user's message
queue=False # Process user input quickly
).then(
process_bot_response,
inputs=[
chatbot, # Full history including the latest user message
system_message_box, max_tokens_slider, temperature_slider, top_p_slider,
frequency_penalty_slider, seed_slider, provider_radio, byok_textbox,
custom_model_box, model_search_box, featured_model_radio
],
outputs=[chatbot] # Stream bot's response to chatbot
).then(
lambda: gr.update(value=None), # Clear MultimodalTextbox (text and files)
None, # No inputs
[msg], # Target component to clear
queue=False
)
def filter_models_choices(search_term):
# print(f"Filtering models with: '{search_term}'")
if not search_term: return gr.update(choices=models_list)
filtered = [m for m in models_list if search_term.lower() in m.lower()]
# print(f"Filtered models: {filtered}")
return gr.update(choices=filtered if filtered else [])
model_search_box.change(fn=filter_models_choices, inputs=model_search_box, outputs=featured_model_radio)
# When a featured model is selected, it could optionally update the custom_model_box.
# For now, custom_model_box is an override. If empty, featured_model_radio is used by `respond`.
# No direct link needed unless you want radio to populate custom_model_box.
# Provider validation (simplified, as InferenceClient handles token logic)
byok_textbox.change(fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
provider_radio.change(fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
print("Gradio UI defined. Initializing...")
if __name__ == "__main__":
print("Launching Gradio demo...")
demo.launch(show_api=True, debug=True) # Enable debug for more Gradio logs
print("Gradio demo launched.") |