File size: 25,995 Bytes
cb919f0
7ab8722
c5a20a4
0d8a414
cb919f0
 
 
 
 
0d8a414
cb919f0
7ab8722
0d8a414
 
 
81286e1
 
 
0d8a414
717cd1f
0d8a414
 
 
 
 
 
 
 
 
7ab8722
0d8a414
 
81286e1
 
0d8a414
81286e1
 
 
7ab8722
81286e1
0d8a414
81286e1
 
 
 
 
cb919f0
7ab8722
c3b8601
7ab8722
 
717cd1f
 
 
 
 
7ab8722
0d8a414
7ab8722
 
 
cb919f0
0d8a414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ab8722
c3b8601
0d8a414
 
 
 
 
 
 
 
 
 
7ab8722
0d8a414
 
 
 
 
7ab8722
0d8a414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c3b8601
0d8a414
 
c3b8601
0d8a414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ab8722
0d8a414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
81b2233
0d8a414
7ab8722
 
 
 
 
81b2233
7ab8722
0d8a414
7ab8722
0d8a414
c3b8601
0d8a414
 
 
 
c3b8601
0d8a414
717cd1f
0d8a414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
717cd1f
cb919f0
81286e1
 
0d8a414
c3b8601
0d8a414
cb919f0
81286e1
a7fbaae
4fa442d
a7fbaae
 
0d8a414
a7fbaae
0d8a414
 
a7fbaae
717cd1f
 
 
7ab8722
 
 
81286e1
 
cb919f0
dc27384
0d8a414
 
 
dc27384
0d8a414
 
6f66243
c3b8601
 
7ab8722
 
c3b8601
0d8a414
 
7ab8722
 
 
0d8a414
 
 
7ab8722
 
c3b8601
7ab8722
717cd1f
0d8a414
 
 
 
 
 
 
 
 
 
a7fbaae
7ab8722
c3b8601
 
7ab8722
0d8a414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a7fbaae
0d8a414
 
 
 
 
 
7ab8722
0d8a414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ab8722
0d8a414
 
 
 
c3b8601
 
0d8a414
 
 
 
 
c3b8601
0d8a414
 
 
c3b8601
0d8a414
7ab8722
0d8a414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7ab8722
0d8a414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4db9e4f
0d8a414
 
 
 
 
 
 
 
717cd1f
0d8a414
 
 
 
717cd1f
 
0d8a414
 
 
 
 
 
 
 
7ab8722
0d8a414
 
 
7ab8722
0d8a414
c3b8601
 
cb919f0
0d8a414
 
cb919f0
 
0d8a414
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json # Added for debug printing payloads
import base64
from PIL import Image
import io

ACCESS_TOKEN = os.getenv("HF_TOKEN")
print(f"Access token from HF_TOKEN env var loaded. Is it None? {ACCESS_TOKEN is None}. Length if not None: {len(ACCESS_TOKEN) if ACCESS_TOKEN else 'N/A'}")

# Function to encode image to base64
def encode_image(image_path_or_pil):
    if not image_path_or_pil:
        print("No image path or PIL Image provided to encode_image")
        return None
    
    try:
        # print(f"Encoding image. Input type: {type(image_path_or_pil)}") # Debug
        
        if isinstance(image_path_or_pil, Image.Image):
            image = image_path_or_pil
            # print("Input is already a PIL Image.")
        elif isinstance(image_path_or_pil, str):
            # print(f"Input is a path string: {image_path_or_pil}")
            if not os.path.exists(image_path_or_pil):
                print(f"Error: Image path does not exist: {image_path_or_pil}")
                return None
            image = Image.open(image_path_or_pil)
        else:
            print(f"Error: Unsupported type for encode_image: {type(image_path_or_pil)}")
            return None
        
        if image.mode == 'RGBA':
            # print("Converting RGBA image to RGB.")
            image = image.convert('RGB')
        
        buffered = io.BytesIO()
        image.save(buffered, format="JPEG")
        img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
        # print("Image encoded successfully to base64.")
        return img_str
    except Exception as e:
        print(f"Error encoding image: {e}")
        return None

def respond(
    message,
    image_files,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    provider,
    custom_api_key, # This is the value from byok_textbox
    custom_model,    
    model_search_term,
    selected_model
):
    print(f"--- New Respond Call ---")
    print(f"Received message: '{message}'")
    print(f"Received {len(image_files) if image_files else 0} image files.")
    # print(f"History length: {len(history)}") # History can be verbose
    print(f"System message: '{system_message}'")
    print(f"Generation Params: MaxTokens={max_tokens}, Temp={temperature}, TopP={top_p}, FreqPenalty={frequency_penalty}, Seed={seed}")
    print(f"Selected provider: '{provider}'")
    
    # Explicitly show the raw custom_api_key received
    raw_key_type = type(custom_api_key)
    raw_key_len = len(custom_api_key) if isinstance(custom_api_key, str) else 'N/A (not a string)'
    print(f"Raw custom_api_key from UI: type={raw_key_type}, length={raw_key_len}")
    if isinstance(custom_api_key, str) and len(custom_api_key) > 0:
         print(f"Raw custom_api_key (masked): '{custom_api_key[:4]}...{custom_api_key[-4:]}'" if len(custom_api_key) > 8 else custom_api_key)


    token_to_use = None
    effective_custom_key = ""

    if custom_api_key and isinstance(custom_api_key, str): # Ensure it's a string and not None
        effective_custom_key = custom_api_key.strip()

    if effective_custom_key: # True if string is not empty after stripping
        token_to_use = effective_custom_key
        print(f"TOKEN SELECTION: USING CUSTOM API KEY (BYOK). Length: {len(token_to_use)}")
        if ACCESS_TOKEN and token_to_use == ACCESS_TOKEN:
            print("INFO: Custom key is identical to the environment HF_TOKEN.")
    else:
        token_to_use = ACCESS_TOKEN # This will be None if HF_TOKEN is not set or empty
        if token_to_use:
            print(f"TOKEN SELECTION: USING DEFAULT API KEY (HF_TOKEN from env). Length: {len(token_to_use)}")
        else:
            print("TOKEN SELECTION: DEFAULT API KEY (HF_TOKEN from env) IS NOT SET or EMPTY. Custom key was also empty.")

    if not token_to_use:
        print("CRITICAL WARNING: No API token determined (neither custom nor default was usable/provided). Inference will likely fail or use public access if supported by model/provider.")
        # InferenceClient will handle token=None by trying its own env var lookup or failing.
    else:
        # For debugging, print a masked version of the token being finally used
        if isinstance(token_to_use, str) and len(token_to_use) > 8:
            print(f"FINAL TOKEN for InferenceClient: '{token_to_use[:4]}...{token_to_use[-4:]}' (masked)")
        elif isinstance(token_to_use, str):
            print(f"FINAL TOKEN for InferenceClient: '{token_to_use}' (short token)")
        else: # Should not happen if logic above is correct and token_to_use is string or None
            print(f"FINAL TOKEN for InferenceClient: {token_to_use} (not a string or None, unusual!)")
    
    # Initialize the Inference Client with the provider and appropriate token
    client = InferenceClient(token=token_to_use, provider=provider)
    print(f"Hugging Face Inference Client initialized with provider: '{provider}'.")

    if seed == -1: # Convert seed to None if -1 (meaning random)
        seed = None

    # Prepare user_content (current message with text and/or images)
    user_content_parts = []
    if message and message.strip():
        user_content_parts.append({"type": "text", "text": message})
    
    if image_files and len(image_files) > 0:
        for img_file_path in image_files:
            if img_file_path: # img_file_path is a string path from Gradio MultimodalTextbox
                encoded_image = encode_image(img_file_path)
                if encoded_image:
                    user_content_parts.append({
                        "type": "image_url",
                        "image_url": {"url": f"data:image/jpeg;base64,{encoded_image}"}
                    })
                else:
                    print(f"Warning: Failed to encode image for current message: {img_file_path}")
    
    # Determine final user_content structure
    if not user_content_parts: # No text and no images
        print("Warning: Current user message is empty (no text, no images).")
        # Depending on API, might need to send empty string or handle this case.
        # For now, let it proceed; API might error or interpret as empty prompt.
        final_user_content = "" 
    elif len(user_content_parts) == 1 and user_content_parts[0]["type"] == "text":
        final_user_content = user_content_parts[0]["text"] # Text-only, pass as string
    else:
        final_user_content = user_content_parts # Multimodal, pass as list of dicts

    # Prepare messages list for the API
    messages = [{"role": "system", "content": system_message}]

    for hist_user_content, hist_assistant_content in history:
        # hist_user_content can be string (text) or tuple (text, [image_paths])
        if hist_user_content:
            if isinstance(hist_user_content, tuple) and len(hist_user_content) == 2:
                # Multimodal history entry: (text, [list_of_image_paths])
                hist_text, hist_image_paths = hist_user_content
                current_hist_user_parts = []
                if hist_text and hist_text.strip():
                    current_hist_user_parts.append({"type": "text", "text": hist_text})
                if hist_image_paths:
                    for hist_img_path in hist_image_paths:
                        encoded_hist_img = encode_image(hist_img_path)
                        if encoded_hist_img:
                            current_hist_user_parts.append({
                                "type": "image_url",
                                "image_url": {"url": f"data:image/jpeg;base64,{encoded_hist_img}"}
                            })
                        else:
                             print(f"Warning: Failed to encode history image: {hist_img_path}")
                if current_hist_user_parts: # Only add if there's content
                     messages.append({"role": "user", "content": current_hist_user_parts})

            elif isinstance(hist_user_content, str): # Text-only history entry
                messages.append({"role": "user", "content": hist_user_content})
            else:
                print(f"Warning: Unexpected type for history user content: {type(hist_user_content)}")

        if hist_assistant_content:
            messages.append({"role": "assistant", "content": hist_assistant_content})

    messages.append({"role": "user", "content": final_user_content})
    # print(f"Final messages object for API: {json.dumps(messages, indent=2)}") # Very verbose, use for deep debugging

    model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
    print(f"Model selected for inference: '{model_to_use}'")

    response_text = ""
    print(f"Sending request to provider '{provider}' for model '{model_to_use}'. Streaming enabled.")

    parameters = {
        "max_tokens": max_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "frequency_penalty": frequency_penalty,
    }
    if seed is not None:
        parameters["seed"] = seed

    try:
        stream = client.chat_completion(
            model=model_to_use,
            messages=messages,
            stream=True,
            **parameters
        )
        
        # print("Streaming response tokens: ", end="", flush=True) # Can be noisy
        for chunk in stream:
            if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
                delta = chunk.choices[0].delta
                if delta and hasattr(delta, 'content') and delta.content:
                    token_text = delta.content
                    # print(token_text, end="", flush=True) # Handled by yield
                    response_text += token_text
                    yield response_text
        # print("\nStream ended.")
    except Exception as e:
        error_message = f"{type(e).__name__}: {str(e)}"
        print(f"ERROR DURING INFERENCE: {error_message}")
        # If it's a client error (4xx), the request body might be relevant
        if hasattr(e, 'response') and e.response is not None:
            print(f"Error details: Status {e.response.status_code}. Response text: {e.response.text}")
            if 400 <= e.response.status_code < 500:
                 try:
                    print(f"Offending request messages payload (first 1000 chars): {json.dumps(messages, indent=2)[:1000]}")
                 except Exception as E:
                    print(f"Could not dump messages payload: {E}")

        response_text += f"\nAn error occurred: {error_message}"
        yield response_text

    print("Completed response generation for current call.")


# Function to validate provider selection based on BYOK
def validate_provider(api_key, provider_choice): # Renamed provider to provider_choice
    # This function's purpose was to force hf-inference if no BYOK for other providers.
    # However, InferenceClient handles provider-specific keys or HF token routing.
    # For now, let's assume any key might work with any provider and let InferenceClient handle it.
    # If a custom key is entered, it *could* be for any provider.
    # If no custom key, and ACCESS_TOKEN is used, it's an HF_TOKEN, best for hf-inference or HF-managed providers.
    # The current logic doesn't strictly need this validation if we trust InferenceClient.
    # Keeping it simple:
    # if not api_key.strip() and provider_choice != "hf-inference":
    #     print(f"No BYOK, but provider '{provider_choice}' selected. Forcing 'hf-inference'.")
    #     return gr.update(value="hf-inference")
    return gr.update(value=provider_choice) # No change for now, allow user selection.

# GRADIO UI
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
    chatbot = gr.Chatbot(
        height=600, 
        show_copy_button=True, 
        placeholder="Select a model, enter your message, and upload images if needed.",
        layout="panel",
        avatar_images=(None, "https://huggingface.co/chat/huggingchat/logo.svg") # Example bot avatar
    )
    
    msg = gr.MultimodalTextbox(
        placeholder="Type a message or upload images...",
        show_label=False,
        container=False,
        scale=12, # Ensure this is within a gr.Row() or similar if scale is used effectively
        file_types=["image"],
        file_count="multiple", # Allows multiple image uploads
        sources=["upload"] # Can add "clipboard"
    )
    
    with gr.Accordion("Settings", open=False):
        system_message_box = gr.Textbox(
            value="You are a helpful AI assistant that can understand images and text.", 
            placeholder="You are a helpful assistant.",
            label="System Prompt"
        )
        
        with gr.Row():
            with gr.Column():
                max_tokens_slider = gr.Slider(1, 4096, value=512, step=1, label="Max new tokens")
                temperature_slider = gr.Slider(0.1, 2.0, value=0.7, step=0.05, label="Temperature") # Range adjusted
                top_p_slider = gr.Slider(0.1, 1.0, value=0.95, step=0.05, label="Top-P")
            with gr.Column():
                frequency_penalty_slider = gr.Slider(-2.0, 2.0, value=0.0, step=0.1, label="Frequency Penalty")
                seed_slider = gr.Slider(-1, 65535, value=-1, step=1, label="Seed (-1 for random)")
        
        providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"]
        provider_radio = gr.Radio(choices=providers_list, value="hf-inference", label="Inference Provider")
        
        byok_textbox = gr.Textbox(
            value="", label="BYOK (Bring Your Own Key)", 
            info="Enter your API key. For 'hf-inference', use an HF token. For other providers, use their specific key or an HF token if supported.",
            placeholder="Enter your API token here", type="password"
        )
        
        custom_model_box = gr.Textbox(
            value="", label="Custom Model ID / Endpoint", 
            info="(Optional) Provide a custom model ID (e.g., 'meta-llama/Llama-3-70b-chat-hf') or full endpoint URL. Overrides featured model selection.",
            placeholder="org/model-name or full URL"
        )
        
        model_search_box = gr.Textbox(label="Filter Featured Models", placeholder="Search...", lines=1)
        
        models_list = [
            "meta-llama/Llama-3.2-11B-Vision-Instruct", "meta-llama/Llama-3.3-70B-Instruct",
            "meta-llama/Llama-3.1-70B-Instruct", "meta-llama/Llama-3.0-70B-Instruct",
            "meta-llama/Llama-3.2-3B-Instruct", "meta-llama/Llama-3.2-1B-Instruct",
            "meta-llama/Llama-3.1-8B-Instruct", "NousResearch/Hermes-3-Llama-3.1-8B",
            "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", "mistralai/Mistral-Nemo-Instruct-2407",
            "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3",
            "mistralai/Mistral-7B-Instruct-v0.2", "Qwen/Qwen3-235B-A22B", "Qwen/Qwen3-32B",
            "Qwen/Qwen2.5-72B-Instruct", "Qwen/Qwen2.5-3B-Instruct", "Qwen/Qwen2.5-0.5B-Instruct",
            "Qwen/QwQ-32B", "Qwen/Qwen2.5-Coder-32B-Instruct", "microsoft/Phi-3.5-mini-instruct",
            "microsoft/Phi-3-mini-128k-instruct", "microsoft/Phi-3-mini-4k-instruct",
        ]
        featured_model_radio = gr.Radio(
            label="Select a Featured Model", choices=models_list, 
            value="meta-llama/Llama-3.2-11B-Vision-Instruct", interactive=True
        )
        gr.Markdown("[All Text-to-Text Models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [All Multimodal Models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")

    # Chat history state (remains gr.State for proper handling by Gradio)
    # The `chatbot` component itself manages its display state.
    # We need a separate state if we want to manipulate the history structure before passing to API.
    # The current `bot` function takes `chatbot` (which is history) directly.

    # Revised user function for MultimodalTextbox
    # It appends the user's input (text and/or files) to the chatbot history.
    # The `bot` function will then process this history.
    def handle_user_input(multimodal_input, chat_history_list):
        text_input = multimodal_input.get("text", "").strip()
        file_inputs = multimodal_input.get("files", []) # List of file paths

        # print(f"User input: Text='{text_input}', Files={file_inputs}")

        if not text_input and not file_inputs:
            # print("User input empty, not adding to history.")
            return chat_history_list # No change if input is empty

        # For multimodal display in chatbot, we can represent images using Markdown.
        # The actual file paths will be used by `respond` for API calls.
        # We need to decide how to store this in history for `respond`
        # Option 1: Store (text, [paths]) tuple for user turns.
        # Option 2: Create separate entries for text and images.
        
        # Let's use Option 1 for structured history, easier for `respond`
        # The `chatbot` component can display a text representation.
        
        display_entry_user = ""
        if text_input:
            display_entry_user += text_input
        
        # For display in chatbot, we can use Markdown for images.
        # For passing to `respond` via history, we need the actual paths.
        # The `bot` function will unpack this.
        
        # For `chatbot` display:
        # If there are images, we can create a text representation.
        # For example, just list "<image1> <image2>" or use Markdown if supported for local files.
        # Gradio Chatbot displays images if the path is a local temp file path.
        
        user_turn_content_for_api = (text_input, [f.name for f in file_inputs if f] if file_inputs else [])

        # For chatbot display:
        # Gradio's Chatbot can display images directly if you pass a list like:
        # [[(image_path1,), (image_path2,)], None] for an image-only user message
        # Or [[text_input, (image_path1,)], None]
        # Let's try to prepare for this.

        if file_inputs:
            # If there's text AND files, Gradio expects text first, then tuples for files.
            # e.g., history.append( [ [text_input] + [(file.name,) for file in file_inputs], None] )
            # Or, more simply, if Chatbot handles multimodal input display well:
            chatbot_user_message = []
            if text_input:
                chatbot_user_message.append(text_input)
            for file_obj in file_inputs:
                if file_obj and hasattr(file_obj, 'name'): # file_obj is a TemporaryFileWrapper
                     chatbot_user_message.append((file_obj.name,)) # Tuple for image path
            
            chat_history_list.append([chatbot_user_message, None])

        elif text_input: # Text only
            chat_history_list.append([text_input, None])
        
        # The `bot` function will receive `chat_history_list`.
        # It needs to reconstruct text and image paths from `chat_history_list[-1][0]`
        # to pass to `respond`'s `message` and `image_files` parameters.

        return chat_history_list


    # Revised bot function to handle history from handle_user_input
    def process_bot_response(
        current_chat_history, # This is the full history from the chatbot
        system_msg, max_tkns, temp, tp_p, freq_pen, sd, prov, api_k, cust_model, srch_term, sel_model
    ):
        if not current_chat_history or not current_chat_history[-1][0]:
            print("Bot: History is empty or last user message is empty.")
            return current_chat_history # Or yield current_chat_history

        last_user_turn_content = current_chat_history[-1][0] # This is what handle_user_input created
        
        # Extract text and image paths from last_user_turn_content
        current_message_text = ""
        current_image_paths = []

        if isinstance(last_user_turn_content, str): # Text-only
            current_message_text = last_user_turn_content
        elif isinstance(last_user_turn_content, list): # Potentially multimodal from handle_user_input
            for item in last_user_turn_content:
                if isinstance(item, str):
                    current_message_text = item # Assumes one text part
                elif isinstance(item, tuple) and len(item) > 0 and isinstance(item[0], str):
                    current_image_paths.append(item[0]) # item[0] is the image path
        
        # print(f"Bot: Extracted for respond - Text='{current_message_text}', Images={current_image_paths}")

        # History for `respond` should be all turns *except* the current one.
        history_for_api = []
        for user_content, assistant_content in current_chat_history[:-1]:
            # Reconstruct (text, [paths]) structure for history items if they were multimodal
            # This part needs careful handling if history itself contains multimodal user turns
            # For simplicity, assuming history user_content is string or already (text, [paths])
            # The current `handle_user_input` makes `user_content` a list for multimodal.
            # This needs to be harmonized.
            
            # Let's simplify: `respond` will parse history. We just pass it.
            # The `respond` function's history processing needs to handle the new format.
            # The `respond` function expects history items to be:
            # user_part: str OR (text_str, [img_paths_list])
            # assistant_part: str
            
            # Let's re-structure history_for_api based on how `handle_user_input` formats it.
            # `handle_user_input` stores `chatbot_user_message` which is `[text, (path1,), (path2,)]` or `text`
            # `respond` needs to be adapted for this history format if we pass it directly.
            
            # For now, let's adapt the history passed to `respond` to its expected format.
            api_hist_user_entry = None
            if isinstance(user_content, str): # Simple text history
                api_hist_user_entry = user_content
            elif isinstance(user_content, list): # Multimodal history from `handle_user_input`
                hist_text = ""
                hist_paths = []
                for item in user_content:
                    if isinstance(item, str): hist_text = item
                    elif isinstance(item, tuple): hist_paths.append(item[0])
                api_hist_user_entry = (hist_text, hist_paths)

            history_for_api.append( (api_hist_user_entry, assistant_content) )


        # Call respond with the current message parts and the processed history
        # The `respond` function's first two args are `message` (text) and `image_files` (list of paths)
        # for the *current* turn.
        
        # Clear the placeholder for bot's response in the last history item
        current_chat_history[-1][1] = "" 
        
        stream = respond(
            current_message_text,
            current_image_paths,
            history_for_api, # Pass the history *before* the current turn
            system_msg, max_tkns, temp, tp_p, freq_pen, sd, prov, api_k, cust_model, srch_term, sel_model
        )
        
        for partial_response in stream:
            current_chat_history[-1][1] = partial_response
            yield current_chat_history


    # Event handlers
    # 1. User submits message (text and/or files)
    # 2. `handle_user_input` updates chatbot history with user's message.
    # 3. `process_bot_response` takes this new history, calls API, and streams response back to chatbot.
    
    submit_event = msg.submit(
        handle_user_input,
        inputs=[msg, chatbot], # Pass current message and full history
        outputs=[chatbot],    # Update chatbot with user's message
        queue=False           # Process user input quickly
    ).then(
        process_bot_response,
        inputs=[
            chatbot, # Full history including the latest user message
            system_message_box, max_tokens_slider, temperature_slider, top_p_slider, 
            frequency_penalty_slider, seed_slider, provider_radio, byok_textbox, 
            custom_model_box, model_search_box, featured_model_radio
        ],
        outputs=[chatbot] # Stream bot's response to chatbot
    ).then(
        lambda: gr.update(value=None),  # Clear MultimodalTextbox (text and files)
        None, # No inputs
        [msg], # Target component to clear
        queue=False
    )
    
    def filter_models_choices(search_term):
        # print(f"Filtering models with: '{search_term}'")
        if not search_term: return gr.update(choices=models_list)
        filtered = [m for m in models_list if search_term.lower() in m.lower()]
        # print(f"Filtered models: {filtered}")
        return gr.update(choices=filtered if filtered else [])

    model_search_box.change(fn=filter_models_choices, inputs=model_search_box, outputs=featured_model_radio)
    
    # When a featured model is selected, it could optionally update the custom_model_box.
    # For now, custom_model_box is an override. If empty, featured_model_radio is used by `respond`.
    # No direct link needed unless you want radio to populate custom_model_box.

    # Provider validation (simplified, as InferenceClient handles token logic)
    byok_textbox.change(fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
    provider_radio.change(fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio)

    print("Gradio UI defined. Initializing...")


if __name__ == "__main__":
    print("Launching Gradio demo...")
    demo.launch(show_api=True, debug=True) # Enable debug for more Gradio logs
    print("Gradio demo launched.")