Spaces:
Running
Running
File size: 14,726 Bytes
038f313 1cee504 c5a20a4 ea82e64 038f313 db00df1 2d6eaa5 c6bdd15 038f313 27c8b8d 038f313 3a64d68 98674ca 05b8ea8 9eb0de2 038f313 0ef95ea 2d6eaa5 0ef95ea 5b8ad4f 2d6eaa5 d92e5cd f7c4208 ba0614b 901bafe 0ef95ea 038f313 1cee504 c5a20a4 2d6eaa5 901bafe 5b8ad4f 27c8b8d 2d6eaa5 27c8b8d 5b8ad4f 2d6eaa5 4df41b9 3f8952c d92e5cd 5b8ad4f 0ef95ea 2d6eaa5 0ef95ea 1cee504 3b18f78 1cee504 2d6eaa5 1cee504 ba0614b 1cee504 ba0614b 1cee504 5b8ad4f 1cee504 2d6eaa5 1cee504 0ef95ea 901bafe 2d6eaa5 f7c4208 2d6eaa5 0ef95ea a8fc89d d92e5cd 2d6eaa5 d92e5cd 2d6eaa5 05b8ea8 1cee504 ba79a28 fbe1950 1cee504 05b8ea8 44fa8df 1cee504 2d6eaa5 5b8ad4f 1cee504 901bafe a8fc89d 05b8ea8 d92e5cd ea82e64 d92e5cd 2d6eaa5 95bc410 2d6eaa5 95bc410 b0cbd1c 05b8ea8 ea82e64 05b8ea8 d92e5cd ea82e64 d92e5cd 05b8ea8 ea82e64 7a4f867 ea82e64 7a4f867 05b8ea8 a8fc89d 2d6eaa5 769901b 77298b9 5b8ad4f 2d6eaa5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json
ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
frequency_penalty,
seed,
provider, # Provider selection (moved up)
custom_model, # Custom Model (moved down)
model_search_term,
selected_model
):
print(f"Received message: {message}")
print(f"History: {history}")
print(f"System message: {system_message}")
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
print(f"Selected model (custom_model): {custom_model}")
print(f"Selected provider: {provider}")
print(f"Model search term: {model_search_term}")
print(f"Selected model from radio: {selected_model}")
# Initialize the Inference Client with the provider
# Provider is specified during initialization, not in the method call
client = InferenceClient(token=ACCESS_TOKEN, provider=provider)
print(f"Hugging Face Inference Client initialized with {provider} provider.")
# Convert seed to None if -1 (meaning random)
if seed == -1:
seed = None
# Prepare messages in the format expected by the API
messages = [{"role": "system", "content": system_message}]
print("Initial messages array constructed.")
# Add conversation history to the context
for val in history:
user_part = val[0]
assistant_part = val[1]
if user_part:
messages.append({"role": "user", "content": user_part})
print(f"Added user message to context: {user_part}")
if assistant_part:
messages.append({"role": "assistant", "content": assistant_part})
print(f"Added assistant message to context: {assistant_part}")
# Append the latest user message
messages.append({"role": "user", "content": message})
print("Latest user message appended.")
# Determine which model to use, prioritizing custom_model if provided
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
print(f"Model selected for inference: {model_to_use}")
# Start with an empty string to build the response as tokens stream in
response = ""
print(f"Sending request to {provider} provider.")
# Prepare parameters for the chat completion request
parameters = {
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
}
if seed is not None:
parameters["seed"] = seed
# Use the InferenceClient for making the request
try:
# Create a generator for the streaming response
# The provider is already set when initializing the client
stream = client.chat_completion(
model=model_to_use,
messages=messages,
stream=True,
**parameters # Pass all other parameters
)
# Process the streaming response
for chunk in stream:
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
# Extract the content from the response
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
token_text = chunk.choices[0].delta.content
if token_text:
print(f"Received token: {token_text}")
response += token_text
yield response
except Exception as e:
print(f"Error during inference: {e}")
response += f"\nError: {str(e)}"
yield response
print("Completed response generation.")
# GRADIO UI
chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", layout="panel")
print("Chatbot interface created.")
# Basic input components
system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt")
max_tokens_slider = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max tokens"
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P"
)
frequency_penalty_slider = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
seed_slider = gr.Slider(
minimum=-1,
maximum=65535,
value=-1,
step=1,
label="Seed (-1 for random)"
)
# Provider selection with model links
providers_list = [
"hf-inference", # Default Hugging Face Inference
"cerebras", # Cerebras provider
"together", # Together AI
"sambanova", # SambaNova
"novita", # Novita AI
"cohere", # Cohere
"fireworks-ai", # Fireworks AI
"hyperbolic", # Hyperbolic
"nebius", # Nebius
"openai" # OpenAI compatible endpoints
]
# Define provider selection with markdown links
provider_radio = gr.Radio(
choices=providers_list,
value="hf-inference",
label="Inference Provider",
info="Select which inference provider to use. Uses your Hugging Face PRO credits."
)
# Create markdown links for each provider
provider_links = {
"hf-inference": "View all models hosted by [Hugging Face](https://huggingface.co/models?inference_provider=hf-inference&pipeline_tag=text-generation&sort=trending)",
"cerebras": "View all models hosted by [Cerebras](https://huggingface.co/models?inference_provider=cerebras&pipeline_tag=text-generation&sort=trending)",
"together": "View all models hosted by [Together AI](https://huggingface.co/models?inference_provider=together&pipeline_tag=text-generation&sort=trending)",
"sambanova": "View all models hosted by [SambaNova](https://huggingface.co/models?inference_provider=sambanova&pipeline_tag=text-generation&sort=trending)",
"novita": "View all models hosted by [Novita AI](https://huggingface.co/models?inference_provider=novita&pipeline_tag=text-generation&sort=trending)",
"cohere": "View all models hosted by [Cohere](https://huggingface.co/models?inference_provider=cohere&pipeline_tag=text-generation&sort=trending)",
"fireworks-ai": "View all models hosted by [Fireworks AI](https://huggingface.co/models?inference_provider=fireworks-ai&pipeline_tag=text-generation&sort=trending)",
"hyperbolic": "View all models hosted by [Hyperbolic](https://huggingface.co/models?inference_provider=hyperbolic&pipeline_tag=text-generation&sort=trending)",
"nebius": "View all models hosted by [Nebius](https://huggingface.co/models?inference_provider=nebius&pipeline_tag=text-generation&sort=trending)",
"openai": "View all models hosted by [OpenAI compatible endpoints](https://huggingface.co/models?inference_provider=openai&pipeline_tag=text-generation&sort=trending)",
}
# Provider links markdown
provider_links_md = gr.Markdown(provider_links["hf-inference"])
# Custom model box (moved down)
custom_model_box = gr.Textbox(
value="",
label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
placeholder="meta-llama/Llama-3.3-70B-Instruct"
)
# Model selection components
model_search_box = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1
)
models_list = [
"meta-llama/Llama-3.3-70B-Instruct",
"meta-llama/Llama-3.1-70B-Instruct",
"meta-llama/Llama-3.0-70B-Instruct",
"meta-llama/Llama-3.2-3B-Instruct",
"meta-llama/Llama-3.2-1B-Instruct",
"meta-llama/Llama-3.1-8B-Instruct",
"NousResearch/Hermes-3-Llama-3.1-8B",
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"mistralai/Mistral-Nemo-Instruct-2407",
"mistralai/Mixtral-8x7B-Instruct-v0.1",
"mistralai/Mistral-7B-Instruct-v0.3",
"mistralai/Mistral-7B-Instruct-v0.2",
"Qwen/Qwen3-235B-A22B",
"Qwen/Qwen3-32B",
"Qwen/Qwen2.5-72B-Instruct",
"Qwen/Qwen2.5-3B-Instruct",
"Qwen/Qwen2.5-0.5B-Instruct",
"Qwen/QwQ-32B",
"Qwen/Qwen2.5-Coder-32B-Instruct",
"microsoft/Phi-3.5-mini-instruct",
"microsoft/Phi-3-mini-128k-instruct",
"microsoft/Phi-3-mini-4k-instruct",
"deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
"HuggingFaceH4/zephyr-7b-beta",
"HuggingFaceTB/SmolLM2-360M-Instruct",
"tiiuae/falcon-7b-instruct",
"01-ai/Yi-1.5-34B-Chat",
]
featured_model_radio = gr.Radio(
label="Select a model below",
choices=models_list,
value="meta-llama/Llama-3.3-70B-Instruct",
interactive=True
)
def filter_models(search_term):
print(f"Filtering models with search term: {search_term}")
filtered = [m for m in models_list if search_term.lower() in m.lower()]
print(f"Filtered models: {filtered}")
return gr.update(choices=filtered)
def set_custom_model_from_radio(selected):
"""
This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
We will update the Custom Model text box with that selection automatically.
"""
print(f"Featured model selected: {selected}")
return selected
# Update provider links when provider selection changes
def update_provider_info(provider):
return provider_links[provider]
# Custom layout with Blocks
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
chatbot_ui = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", layout="panel")
with gr.Row():
with gr.Column():
msg = gr.Textbox(
scale=4,
show_label=False,
placeholder="Enter text and press enter",
container=False,
)
submit_btn = gr.Button("Submit", variant="primary")
with gr.Accordion("Additional Inputs", open=False):
system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt")
with gr.Row():
with gr.Column():
max_tokens_slider = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max tokens"
)
temperature_slider = gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature"
)
top_p_slider = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P"
)
with gr.Column():
frequency_penalty_slider = gr.Slider(
minimum=-2.0,
maximum=2.0,
value=0.0,
step=0.1,
label="Frequency Penalty"
)
seed_slider = gr.Slider(
minimum=-1,
maximum=65535,
value=-1,
step=1,
label="Seed (-1 for random)"
)
# Provider selection section with markdown links
with gr.Group():
provider_radio = gr.Radio(
choices=providers_list,
value="hf-inference",
label="Inference Provider",
info="Select which inference provider to use. Uses your Hugging Face PRO credits."
)
provider_links_md = gr.Markdown(provider_links["hf-inference"])
# Connect provider radio to update markdown links
provider_radio.change(
fn=update_provider_info,
inputs=provider_radio,
outputs=provider_links_md
)
# Custom model box (moved below provider selection)
custom_model_box = gr.Textbox(
value="",
label="Custom Model",
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
placeholder="meta-llama/Llama-3.3-70B-Instruct"
)
# Model filter and selection
model_search_box = gr.Textbox(
label="Filter Models",
placeholder="Search for a featured model...",
lines=1
)
featured_model_radio = gr.Radio(
label="Select a model below",
choices=models_list,
value="meta-llama/Llama-3.3-70B-Instruct",
interactive=True
)
# Connect model filter and selection events
model_search_box.change(
fn=filter_models,
inputs=model_search_box,
outputs=featured_model_radio
)
featured_model_radio.change(
fn=set_custom_model_from_radio,
inputs=featured_model_radio,
outputs=custom_model_box
)
# Chat history state
history_state = gr.State([])
# Connect chat functionality
submit_btn.click(
fn=respond,
inputs=[
msg,
history_state,
system_message_box,
max_tokens_slider,
temperature_slider,
top_p_slider,
frequency_penalty_slider,
seed_slider,
provider_radio, # Provider selection (moved up)
custom_model_box, # Custom Model (moved down)
model_search_box,
featured_model_radio
],
outputs=[chatbot_ui, history_state],
show_progress=True,
)
msg.submit(
fn=respond,
inputs=[
msg,
history_state,
system_message_box,
max_tokens_slider,
temperature_slider,
top_p_slider,
frequency_penalty_slider,
seed_slider,
provider_radio, # Provider selection (moved up)
custom_model_box, # Custom Model (moved down)
model_search_box,
featured_model_radio
],
outputs=[chatbot_ui, history_state],
show_progress=True,
)
print("Gradio interface initialized.")
if __name__ == "__main__":
print("Launching the demo application.")
demo.launch(show_api=True) |