File size: 14,726 Bytes
038f313
1cee504
c5a20a4
ea82e64
038f313
db00df1
2d6eaa5
c6bdd15
038f313
27c8b8d
 
 
038f313
 
 
3a64d68
98674ca
05b8ea8
 
9eb0de2
 
038f313
0ef95ea
2d6eaa5
0ef95ea
 
 
5b8ad4f
2d6eaa5
d92e5cd
 
f7c4208
ba0614b
 
 
 
 
901bafe
0ef95ea
 
038f313
1cee504
c5a20a4
2d6eaa5
901bafe
5b8ad4f
27c8b8d
2d6eaa5
 
 
 
 
 
 
 
27c8b8d
5b8ad4f
 
2d6eaa5
4df41b9
3f8952c
d92e5cd
5b8ad4f
0ef95ea
2d6eaa5
0ef95ea
1cee504
 
 
 
3b18f78
1cee504
 
 
 
2d6eaa5
1cee504
 
 
ba0614b
1cee504
 
ba0614b
1cee504
5b8ad4f
 
1cee504
 
 
2d6eaa5
1cee504
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ef95ea
901bafe
2d6eaa5
f7c4208
2d6eaa5
0ef95ea
a8fc89d
d92e5cd
2d6eaa5
 
 
 
 
 
 
d92e5cd
2d6eaa5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05b8ea8
1cee504
 
 
 
 
ba79a28
 
 
 
 
fbe1950
1cee504
 
05b8ea8
44fa8df
1cee504
2d6eaa5
5b8ad4f
1cee504
901bafe
a8fc89d
05b8ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d92e5cd
ea82e64
 
 
 
 
 
d92e5cd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2d6eaa5
 
95bc410
 
2d6eaa5
 
95bc410
b0cbd1c
05b8ea8
 
 
ea82e64
05b8ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d92e5cd
 
 
ea82e64
d92e5cd
05b8ea8
ea82e64
7a4f867
ea82e64
7a4f867
 
05b8ea8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a8fc89d
2d6eaa5
769901b
77298b9
5b8ad4f
2d6eaa5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
import gradio as gr
from huggingface_hub import InferenceClient
import os
import json

ACCESS_TOKEN = os.getenv("HF_TOKEN")
print("Access token loaded.")

def respond(
    message,
    history: list[tuple[str, str]],
    system_message,
    max_tokens,
    temperature,
    top_p,
    frequency_penalty,
    seed,
    provider,  # Provider selection (moved up)
    custom_model,  # Custom Model (moved down)
    model_search_term,
    selected_model
):
    print(f"Received message: {message}")
    print(f"History: {history}")
    print(f"System message: {system_message}")
    print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
    print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
    print(f"Selected model (custom_model): {custom_model}")
    print(f"Selected provider: {provider}")
    print(f"Model search term: {model_search_term}")
    print(f"Selected model from radio: {selected_model}")

    # Initialize the Inference Client with the provider
    # Provider is specified during initialization, not in the method call
    client = InferenceClient(token=ACCESS_TOKEN, provider=provider)
    print(f"Hugging Face Inference Client initialized with {provider} provider.")

    # Convert seed to None if -1 (meaning random)
    if seed == -1:
        seed = None

    # Prepare messages in the format expected by the API
    messages = [{"role": "system", "content": system_message}]
    print("Initial messages array constructed.")

    # Add conversation history to the context
    for val in history:
        user_part = val[0]
        assistant_part = val[1]
        if user_part:
            messages.append({"role": "user", "content": user_part})
            print(f"Added user message to context: {user_part}")
        if assistant_part:
            messages.append({"role": "assistant", "content": assistant_part})
            print(f"Added assistant message to context: {assistant_part}")

    # Append the latest user message
    messages.append({"role": "user", "content": message})
    print("Latest user message appended.")

    # Determine which model to use, prioritizing custom_model if provided
    model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
    print(f"Model selected for inference: {model_to_use}")

    # Start with an empty string to build the response as tokens stream in
    response = ""
    print(f"Sending request to {provider} provider.")

    # Prepare parameters for the chat completion request
    parameters = {
        "max_tokens": max_tokens,
        "temperature": temperature,
        "top_p": top_p,
        "frequency_penalty": frequency_penalty,
    }
    
    if seed is not None:
        parameters["seed"] = seed

    # Use the InferenceClient for making the request
    try:
        # Create a generator for the streaming response
        # The provider is already set when initializing the client
        stream = client.chat_completion(
            model=model_to_use,
            messages=messages,
            stream=True,
            **parameters  # Pass all other parameters
        )
        
        # Process the streaming response
        for chunk in stream:
            if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
                # Extract the content from the response
                if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
                    token_text = chunk.choices[0].delta.content
                    if token_text:
                        print(f"Received token: {token_text}")
                        response += token_text
                        yield response
    except Exception as e:
        print(f"Error during inference: {e}")
        response += f"\nError: {str(e)}"
        yield response

    print("Completed response generation.")

# GRADIO UI

chatbot = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", layout="panel")
print("Chatbot interface created.")

# Basic input components
system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt")

max_tokens_slider = gr.Slider(
    minimum=1,
    maximum=4096,
    value=512,
    step=1,
    label="Max tokens"
)
temperature_slider = gr.Slider(
    minimum=0.1,
    maximum=4.0,
    value=0.7,
    step=0.1,
    label="Temperature"
)
top_p_slider = gr.Slider(
    minimum=0.1,
    maximum=1.0,
    value=0.95,
    step=0.05,
    label="Top-P"
)
frequency_penalty_slider = gr.Slider(
    minimum=-2.0,
    maximum=2.0,
    value=0.0,
    step=0.1,
    label="Frequency Penalty"
)
seed_slider = gr.Slider(
    minimum=-1,
    maximum=65535,
    value=-1,
    step=1,
    label="Seed (-1 for random)"
)

# Provider selection with model links
providers_list = [
    "hf-inference",  # Default Hugging Face Inference
    "cerebras",      # Cerebras provider
    "together",      # Together AI
    "sambanova",     # SambaNova
    "novita",        # Novita AI
    "cohere",        # Cohere
    "fireworks-ai",  # Fireworks AI
    "hyperbolic",    # Hyperbolic
    "nebius",        # Nebius
    "openai"         # OpenAI compatible endpoints
]

# Define provider selection with markdown links
provider_radio = gr.Radio(
    choices=providers_list,
    value="hf-inference",
    label="Inference Provider",
    info="Select which inference provider to use. Uses your Hugging Face PRO credits."
)

# Create markdown links for each provider
provider_links = {
    "hf-inference": "View all models hosted by [Hugging Face](https://huggingface.co/models?inference_provider=hf-inference&pipeline_tag=text-generation&sort=trending)",
    "cerebras": "View all models hosted by [Cerebras](https://huggingface.co/models?inference_provider=cerebras&pipeline_tag=text-generation&sort=trending)",
    "together": "View all models hosted by [Together AI](https://huggingface.co/models?inference_provider=together&pipeline_tag=text-generation&sort=trending)",
    "sambanova": "View all models hosted by [SambaNova](https://huggingface.co/models?inference_provider=sambanova&pipeline_tag=text-generation&sort=trending)",
    "novita": "View all models hosted by [Novita AI](https://huggingface.co/models?inference_provider=novita&pipeline_tag=text-generation&sort=trending)",
    "cohere": "View all models hosted by [Cohere](https://huggingface.co/models?inference_provider=cohere&pipeline_tag=text-generation&sort=trending)",
    "fireworks-ai": "View all models hosted by [Fireworks AI](https://huggingface.co/models?inference_provider=fireworks-ai&pipeline_tag=text-generation&sort=trending)",
    "hyperbolic": "View all models hosted by [Hyperbolic](https://huggingface.co/models?inference_provider=hyperbolic&pipeline_tag=text-generation&sort=trending)",
    "nebius": "View all models hosted by [Nebius](https://huggingface.co/models?inference_provider=nebius&pipeline_tag=text-generation&sort=trending)",
    "openai": "View all models hosted by [OpenAI compatible endpoints](https://huggingface.co/models?inference_provider=openai&pipeline_tag=text-generation&sort=trending)",
}

# Provider links markdown
provider_links_md = gr.Markdown(provider_links["hf-inference"])

# Custom model box (moved down)
custom_model_box = gr.Textbox(
    value="",
    label="Custom Model",
    info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
    placeholder="meta-llama/Llama-3.3-70B-Instruct"
)

# Model selection components
model_search_box = gr.Textbox(
    label="Filter Models",
    placeholder="Search for a featured model...",
    lines=1
)

models_list = [
    "meta-llama/Llama-3.3-70B-Instruct",
    "meta-llama/Llama-3.1-70B-Instruct",
    "meta-llama/Llama-3.0-70B-Instruct",
    "meta-llama/Llama-3.2-3B-Instruct",
    "meta-llama/Llama-3.2-1B-Instruct",
    "meta-llama/Llama-3.1-8B-Instruct",
    "NousResearch/Hermes-3-Llama-3.1-8B",
    "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
    "mistralai/Mistral-Nemo-Instruct-2407",
    "mistralai/Mixtral-8x7B-Instruct-v0.1",
    "mistralai/Mistral-7B-Instruct-v0.3",
    "mistralai/Mistral-7B-Instruct-v0.2",
    "Qwen/Qwen3-235B-A22B",
    "Qwen/Qwen3-32B",
    "Qwen/Qwen2.5-72B-Instruct",
    "Qwen/Qwen2.5-3B-Instruct",
    "Qwen/Qwen2.5-0.5B-Instruct",
    "Qwen/QwQ-32B",
    "Qwen/Qwen2.5-Coder-32B-Instruct",
    "microsoft/Phi-3.5-mini-instruct",
    "microsoft/Phi-3-mini-128k-instruct",
    "microsoft/Phi-3-mini-4k-instruct",
    "deepseek-ai/DeepSeek-R1-Distill-Qwen-32B",
    "deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
    "HuggingFaceH4/zephyr-7b-beta",
    "HuggingFaceTB/SmolLM2-360M-Instruct",
    "tiiuae/falcon-7b-instruct",
    "01-ai/Yi-1.5-34B-Chat",
]

featured_model_radio = gr.Radio(
    label="Select a model below",
    choices=models_list,
    value="meta-llama/Llama-3.3-70B-Instruct",
    interactive=True
)

def filter_models(search_term):
    print(f"Filtering models with search term: {search_term}")
    filtered = [m for m in models_list if search_term.lower() in m.lower()]
    print(f"Filtered models: {filtered}")
    return gr.update(choices=filtered)

def set_custom_model_from_radio(selected):
    """
    This function will get triggered whenever someone picks a model from the 'Featured Models' radio.
    We will update the Custom Model text box with that selection automatically.
    """
    print(f"Featured model selected: {selected}")
    return selected

# Update provider links when provider selection changes
def update_provider_info(provider):
    return provider_links[provider]

# Custom layout with Blocks
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
    chatbot_ui = gr.Chatbot(height=600, show_copy_button=True, placeholder="Select a model and begin chatting", layout="panel")
    
    with gr.Row():
        with gr.Column():
            msg = gr.Textbox(
                scale=4,
                show_label=False,
                placeholder="Enter text and press enter",
                container=False,
            )
            submit_btn = gr.Button("Submit", variant="primary")
    
    with gr.Accordion("Additional Inputs", open=False):
        system_message_box = gr.Textbox(value="", placeholder="You are a helpful assistant.", label="System Prompt")
        
        with gr.Row():
            with gr.Column():
                max_tokens_slider = gr.Slider(
                    minimum=1,
                    maximum=4096,
                    value=512,
                    step=1,
                    label="Max tokens"
                )
                temperature_slider = gr.Slider(
                    minimum=0.1,
                    maximum=4.0,
                    value=0.7,
                    step=0.1,
                    label="Temperature"
                )
                top_p_slider = gr.Slider(
                    minimum=0.1,
                    maximum=1.0,
                    value=0.95,
                    step=0.05,
                    label="Top-P"
                )
            
            with gr.Column():
                frequency_penalty_slider = gr.Slider(
                    minimum=-2.0,
                    maximum=2.0,
                    value=0.0,
                    step=0.1,
                    label="Frequency Penalty"
                )
                seed_slider = gr.Slider(
                    minimum=-1,
                    maximum=65535,
                    value=-1,
                    step=1,
                    label="Seed (-1 for random)"
                )
        
        # Provider selection section with markdown links
        with gr.Group():
            provider_radio = gr.Radio(
                choices=providers_list,
                value="hf-inference",
                label="Inference Provider",
                info="Select which inference provider to use. Uses your Hugging Face PRO credits."
            )
            provider_links_md = gr.Markdown(provider_links["hf-inference"])
            
            # Connect provider radio to update markdown links
            provider_radio.change(
                fn=update_provider_info,
                inputs=provider_radio,
                outputs=provider_links_md
            )
        
        # Custom model box (moved below provider selection)
        custom_model_box = gr.Textbox(
            value="",
            label="Custom Model",
            info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
            placeholder="meta-llama/Llama-3.3-70B-Instruct"
        )
        
        # Model filter and selection
        model_search_box = gr.Textbox(
            label="Filter Models",
            placeholder="Search for a featured model...",
            lines=1
        )
        
        featured_model_radio = gr.Radio(
            label="Select a model below",
            choices=models_list,
            value="meta-llama/Llama-3.3-70B-Instruct",
            interactive=True
        )
    
    # Connect model filter and selection events
    model_search_box.change(
        fn=filter_models,
        inputs=model_search_box,
        outputs=featured_model_radio
    )
    
    featured_model_radio.change(
        fn=set_custom_model_from_radio,
        inputs=featured_model_radio,
        outputs=custom_model_box
    )
    
    # Chat history state
    history_state = gr.State([])
    
    # Connect chat functionality
    submit_btn.click(
        fn=respond,
        inputs=[
            msg,
            history_state,
            system_message_box,
            max_tokens_slider,
            temperature_slider,
            top_p_slider,
            frequency_penalty_slider,
            seed_slider,
            provider_radio,     # Provider selection (moved up)
            custom_model_box,   # Custom Model (moved down)
            model_search_box,
            featured_model_radio
        ],
        outputs=[chatbot_ui, history_state],
        show_progress=True,
    )
    
    msg.submit(
        fn=respond,
        inputs=[
            msg,
            history_state,
            system_message_box,
            max_tokens_slider,
            temperature_slider,
            top_p_slider,
            frequency_penalty_slider,
            seed_slider,
            provider_radio,     # Provider selection (moved up)
            custom_model_box,   # Custom Model (moved down)
            model_search_box,
            featured_model_radio
        ],
        outputs=[chatbot_ui, history_state],
        show_progress=True,
    )

print("Gradio interface initialized.")

if __name__ == "__main__":
    print("Launching the demo application.")
    demo.launch(show_api=True)