Spaces:
Sleeping
Sleeping
import gradio as gr | |
import torch | |
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoModelForSequenceClassification | |
from sentence_transformers import SentenceTransformer | |
import numpy as np | |
# Load models | |
llm = AutoModelForCausalLM.from_pretrained("EleutherAI/gpt-neo-1.3B") | |
llm_tokenizer = AutoTokenizer.from_pretrained("EleutherAI/gpt-neo-1.3B") | |
reranker = AutoModelForSequenceClassification.from_pretrained("cross-encoder/ms-marco-MiniLM-L-6-v2") | |
reranker_tokenizer = AutoTokenizer.from_pretrained("cross-encoder/ms-marco-MiniLM-L-6-v2") | |
retriever = SentenceTransformer('sentence-transformers/all-MiniLM-L6-v2') | |
def generate_query(document): | |
prompt = f"Generate a relevant search query for the following document:\n\n{document}\n\nQuery:" | |
input_ids = llm_tokenizer.encode(prompt, return_tensors="pt") | |
output = llm.generate(input_ids, max_length=50, num_return_sequences=5) | |
queries = [llm_tokenizer.decode(seq, skip_special_tokens=True) for seq in output] | |
return queries | |
def rerank_pairs(queries, document): | |
pairs = [[query, document] for query in queries] | |
inputs = reranker_tokenizer(pairs, padding=True, truncation=True, return_tensors="pt") | |
scores = reranker(**inputs).logits.squeeze(-1) | |
best_query = queries[torch.argmax(scores)] | |
return best_query | |
def train_retriever(query_doc_pairs): | |
# This is a placeholder for the actual training process | |
queries, docs = zip(*query_doc_pairs) | |
query_embeddings = retriever.encode(queries) | |
doc_embeddings = retriever.encode(docs) | |
similarity = np.dot(query_embeddings, doc_embeddings.T) | |
return f"Retriever trained on {len(query_doc_pairs)} pairs. Average similarity: {similarity.mean():.4f}" | |
def inpars_v2(document): | |
queries = generate_query(document) | |
best_query = rerank_pairs(queries, document) | |
result = train_retriever([(best_query, document)]) | |
return f"Generated query: {best_query}\n\n{result}" | |
iface = gr.Interface( | |
fn=inpars_v2, | |
inputs=gr.Textbox(lines=5, label="Input Document"), | |
outputs=gr.Textbox(label="Result"), | |
title="InPars-v2 Demo", | |
description="Generate queries and train a retriever using LLMs and rerankers." | |
) | |
iface.launch() |