Spaces:
Paused
Paused
# Copyright (c) 2021 Zhengyang Chen ([email protected]) | |
# 2022 Hongji Wang ([email protected]) | |
# 2023 Bing Han ([email protected]) | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
""" This implementation is adapted from github repo: | |
https://github.com/lawlict/ECAPA-TDNN. | |
""" | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
import sparktts.modules.speaker.pooling_layers as pooling_layers | |
class Res2Conv1dReluBn(nn.Module): | |
""" | |
in_channels == out_channels == channels | |
""" | |
def __init__( | |
self, | |
channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
dilation=1, | |
bias=True, | |
scale=4, | |
): | |
super().__init__() | |
assert channels % scale == 0, "{} % {} != 0".format(channels, scale) | |
self.scale = scale | |
self.width = channels // scale | |
self.nums = scale if scale == 1 else scale - 1 | |
self.convs = [] | |
self.bns = [] | |
for i in range(self.nums): | |
self.convs.append( | |
nn.Conv1d( | |
self.width, | |
self.width, | |
kernel_size, | |
stride, | |
padding, | |
dilation, | |
bias=bias, | |
) | |
) | |
self.bns.append(nn.BatchNorm1d(self.width)) | |
self.convs = nn.ModuleList(self.convs) | |
self.bns = nn.ModuleList(self.bns) | |
def forward(self, x): | |
out = [] | |
spx = torch.split(x, self.width, 1) | |
sp = spx[0] | |
for i, (conv, bn) in enumerate(zip(self.convs, self.bns)): | |
# Order: conv -> relu -> bn | |
if i >= 1: | |
sp = sp + spx[i] | |
sp = conv(sp) | |
sp = bn(F.relu(sp)) | |
out.append(sp) | |
if self.scale != 1: | |
out.append(spx[self.nums]) | |
out = torch.cat(out, dim=1) | |
return out | |
""" Conv1d + BatchNorm1d + ReLU | |
""" | |
class Conv1dReluBn(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
out_channels, | |
kernel_size=1, | |
stride=1, | |
padding=0, | |
dilation=1, | |
bias=True, | |
): | |
super().__init__() | |
self.conv = nn.Conv1d( | |
in_channels, out_channels, kernel_size, stride, padding, dilation, bias=bias | |
) | |
self.bn = nn.BatchNorm1d(out_channels) | |
def forward(self, x): | |
return self.bn(F.relu(self.conv(x))) | |
""" The SE connection of 1D case. | |
""" | |
class SE_Connect(nn.Module): | |
def __init__(self, channels, se_bottleneck_dim=128): | |
super().__init__() | |
self.linear1 = nn.Linear(channels, se_bottleneck_dim) | |
self.linear2 = nn.Linear(se_bottleneck_dim, channels) | |
def forward(self, x): | |
out = x.mean(dim=2) | |
out = F.relu(self.linear1(out)) | |
out = torch.sigmoid(self.linear2(out)) | |
out = x * out.unsqueeze(2) | |
return out | |
""" SE-Res2Block of the ECAPA-TDNN architecture. | |
""" | |
class SE_Res2Block(nn.Module): | |
def __init__(self, channels, kernel_size, stride, padding, dilation, scale): | |
super().__init__() | |
self.se_res2block = nn.Sequential( | |
Conv1dReluBn(channels, channels, kernel_size=1, stride=1, padding=0), | |
Res2Conv1dReluBn( | |
channels, kernel_size, stride, padding, dilation, scale=scale | |
), | |
Conv1dReluBn(channels, channels, kernel_size=1, stride=1, padding=0), | |
SE_Connect(channels), | |
) | |
def forward(self, x): | |
return x + self.se_res2block(x) | |
class ECAPA_TDNN(nn.Module): | |
def __init__( | |
self, | |
channels=512, | |
feat_dim=80, | |
embed_dim=192, | |
pooling_func="ASTP", | |
global_context_att=False, | |
emb_bn=False, | |
): | |
super().__init__() | |
self.layer1 = Conv1dReluBn(feat_dim, channels, kernel_size=5, padding=2) | |
self.layer2 = SE_Res2Block( | |
channels, kernel_size=3, stride=1, padding=2, dilation=2, scale=8 | |
) | |
self.layer3 = SE_Res2Block( | |
channels, kernel_size=3, stride=1, padding=3, dilation=3, scale=8 | |
) | |
self.layer4 = SE_Res2Block( | |
channels, kernel_size=3, stride=1, padding=4, dilation=4, scale=8 | |
) | |
cat_channels = channels * 3 | |
out_channels = 512 * 3 | |
self.conv = nn.Conv1d(cat_channels, out_channels, kernel_size=1) | |
self.pool = getattr(pooling_layers, pooling_func)( | |
in_dim=out_channels, global_context_att=global_context_att | |
) | |
self.pool_out_dim = self.pool.get_out_dim() | |
self.bn = nn.BatchNorm1d(self.pool_out_dim) | |
self.linear = nn.Linear(self.pool_out_dim, embed_dim) | |
self.emb_bn = emb_bn | |
if emb_bn: # better in SSL for SV | |
self.bn2 = nn.BatchNorm1d(embed_dim) | |
else: | |
self.bn2 = nn.Identity() | |
def forward(self, x, return_latent=False): | |
x = x.permute(0, 2, 1) # (B,T,F) -> (B,F,T) | |
out1 = self.layer1(x) | |
out2 = self.layer2(out1) | |
out3 = self.layer3(out2) | |
out4 = self.layer4(out3) | |
out = torch.cat([out2, out3, out4], dim=1) | |
latent = F.relu(self.conv(out)) | |
out = self.bn(self.pool(latent)) | |
out = self.linear(out) | |
if self.emb_bn: | |
out = self.bn2(out) | |
if return_latent: | |
return out, latent | |
return out | |
def ECAPA_TDNN_c1024(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False): | |
return ECAPA_TDNN( | |
channels=1024, | |
feat_dim=feat_dim, | |
embed_dim=embed_dim, | |
pooling_func=pooling_func, | |
emb_bn=emb_bn, | |
) | |
def ECAPA_TDNN_GLOB_c1024(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False): | |
return ECAPA_TDNN( | |
channels=1024, | |
feat_dim=feat_dim, | |
embed_dim=embed_dim, | |
pooling_func=pooling_func, | |
global_context_att=True, | |
emb_bn=emb_bn, | |
) | |
def ECAPA_TDNN_c512(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False): | |
return ECAPA_TDNN( | |
channels=512, | |
feat_dim=feat_dim, | |
embed_dim=embed_dim, | |
pooling_func=pooling_func, | |
emb_bn=emb_bn, | |
) | |
def ECAPA_TDNN_GLOB_c512(feat_dim, embed_dim, pooling_func="ASTP", emb_bn=False): | |
return ECAPA_TDNN( | |
channels=512, | |
feat_dim=feat_dim, | |
embed_dim=embed_dim, | |
pooling_func=pooling_func, | |
global_context_att=True, | |
emb_bn=emb_bn, | |
) | |
if __name__ == "__main__": | |
x = torch.zeros(1, 200, 100) | |
model = ECAPA_TDNN_GLOB_c512(feat_dim=100, embed_dim=256, pooling_func="ASTP") | |
model.eval() | |
out, latent = model(x, True) | |
print(out.shape) | |
print(latent.shape) | |
num_params = sum(param.numel() for param in model.parameters()) | |
print("{} M".format(num_params / 1e6)) | |
# from thop import profile | |
# x_np = torch.randn(1, 200, 80) | |
# flops, params = profile(model, inputs=(x_np, )) | |
# print("FLOPs: {} G, Params: {} M".format(flops / 1e9, params / 1e6)) | |