File size: 4,693 Bytes
679c1f9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# Copyright (c) 2025 SparkAudio
#               2025 Xinsheng Wang ([email protected])
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import torch
import torch.nn as nn

from typing import List, Tuple
from sparktts.modules.fsq.residual_fsq import ResidualFSQ
from sparktts.modules.speaker.ecapa_tdnn import ECAPA_TDNN_GLOB_c512
from sparktts.modules.speaker.perceiver_encoder import PerceiverResampler

"""
x-vector + d-vector
"""


class SpeakerEncoder(nn.Module):
    """

    Args:
        input_dim (int): acoustic feature dimension
        out_dim (int): output dimension of x-vector and d-vector
        latent_dim (int): latent dimension before quantization
        token_num (int): sequence length of speaker tokens
        fsq_levels (List[int]): number of levels for each quantizer
        fsq_num_quantizers (int): number of quantizers

    Return:
        speaker_embs: (B, T2, out_dim)
    """

    def __init__(
        self,
        input_dim: int = 100,
        out_dim: int = 512,
        latent_dim: int = 128,
        token_num: int = 32,
        fsq_levels: List[int] = [4, 4, 4, 4, 4, 4],
        fsq_num_quantizers: int = 1,
    ):
        super(SpeakerEncoder, self).__init__()

        self.speaker_encoder = ECAPA_TDNN_GLOB_c512(
            feat_dim=input_dim, embed_dim=out_dim
        )
        self.perceiver_sampler = PerceiverResampler(
            dim=latent_dim, dim_context=512 * 3, num_latents=token_num
        )
        self.quantizer = ResidualFSQ(
            levels=fsq_levels,
            num_quantizers=fsq_num_quantizers,
            dim=latent_dim,
            is_channel_first=True,
            quantize_dropout=False,
        )

        self.project = nn.Linear(latent_dim * token_num, out_dim)

    def get_codes_from_indices(self, indices: torch.Tensor) -> torch.Tensor:
        zq = self.quantizer.get_codes_from_indices(indices.transpose(1, 2))
        return zq.transpose(1, 2)

    def get_indices(self, mels: torch.Tensor) -> torch.Tensor:
        mels = mels.transpose(1, 2)
        x = self.perceiver_sampler(mels).transpose(1, 2)
        zq, indices = self.quantizer(x)
        return indices

    def forward(self, mels: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
        """
        Args:
            mels: (B, D_mel, T1)

        Return:
            x_vector: (B, out_dim)
            d_vector: (B, out_dim)
        """
        # mels = mels.transpose(1,2)

        x_vector, features = self.speaker_encoder(mels, True)
        x = self.perceiver_sampler(features.transpose(1, 2)).transpose(1, 2)
        zq, indices = self.quantizer(x)  # zq: (B, latent_dim, T2, latent_dim)
        x = zq.reshape(zq.shape[0], -1)
        d_vector = self.project(x)

        return x_vector, d_vector
    
    def tokenize(self, mels: torch.Tensor) -> torch.Tensor:
        """tokenize the input mel spectrogram"""
        _, features = self.speaker_encoder(mels, True)
        x = self.perceiver_sampler(features.transpose(1, 2)).transpose(1, 2)
        zq, indices = self.quantizer(x)
        return indices
    
    def detokenize(self, indices: torch.Tensor) -> torch.Tensor:
        """detokenize the input indices to d-vector"""
        zq = self.quantizer.get_output_from_indices(indices.transpose(1, 2)).transpose(1, 2)
        x = zq.reshape(zq.shape[0], -1)
        d_vector = self.project(x)
        return d_vector

if __name__ == "__main__":
    model = SpeakerEncoder(
        input_dim=100,
        latent_dim=128,
        token_num=32,
        fsq_levels=[4, 4, 4, 4, 4, 4],
        fsq_num_quantizers=1,
    )
    mel = torch.randn(8, 200, 100)
    x_vector, d_vector = model(mel)
    print("x-vector shape", x_vector.shape)
    print("d-vector shape", d_vector.shape)

    indices = model.tokenize(mel)
    print("indices shape", indices.shape)
    d_vector_post = model.detokenize(indices)
    print("d-vector shape", d_vector_post.shape)
    if d_vector_post.all() == d_vector.all():
        print("d-vector post and d-vector are the same")
    else:
        print("d-vector post and d-vector are different")
    num_params = sum(param.numel() for param in model.parameters())
    print("{} M".format(num_params / 1e6))