Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import urllib.request | |
| import requests | |
| import bs4 | |
| import lxml | |
| import os | |
| #import subprocess | |
| from huggingface_hub import InferenceClient,HfApi | |
| import random | |
| import json | |
| import datetime | |
| #from query import tasks | |
| from prompts import ( | |
| FINDER, | |
| COMPRESS_HISTORY_PROMPT, | |
| COMPRESS_DATA_PROMPT, | |
| LOG_PROMPT, | |
| LOG_RESPONSE, | |
| PREFIX, | |
| TASK_PROMPT, | |
| ) | |
| api=HfApi() | |
| client = InferenceClient( | |
| "mistralai/Mixtral-8x7B-Instruct-v0.1" | |
| ) | |
| def parse_action(string: str): | |
| assert string.startswith("action:") | |
| idx = string.find("action_input=") | |
| if idx == -1: | |
| return string[8:], None | |
| return string[8 : idx - 1], string[idx + 13 :].strip("'").strip('"') | |
| VERBOSE = True | |
| MAX_HISTORY = 100 | |
| MAX_DATA = 100 | |
| def format_prompt(message, history): | |
| prompt = "<s>" | |
| for user_prompt, bot_response in history: | |
| prompt += f"[INST] {user_prompt} [/INST]" | |
| prompt += f" {bot_response}</s> " | |
| prompt += f"[INST] {message} [/INST]" | |
| return prompt | |
| def call_search(purpose, task, history, action_input): | |
| return_list=[] | |
| print (action_input) | |
| #if action_input in query.tasks: | |
| print ("trying") | |
| try: | |
| if action_input != "" and action_input != None: | |
| action_input.strip('""') | |
| #model_list = api.list_models(filter=f"{action_input}",sort="last_modified",limit=1000,direction=-1) | |
| #model_list = api.list_models(filter=f"{action_input}",limit=1000) | |
| model_list = api.list_models(filter=f"{action_input}") | |
| this_obj = list(model_list) | |
| print(f'THIS_OBJ :: {this_obj[0]}') | |
| for i,eb in enumerate(this_obj): | |
| #return_list.append(this_obj[i].id) | |
| return_list.append({"id":this_obj[i].id, | |
| "author":this_obj[i].author, | |
| "created_at":this_obj[i].created_at, | |
| "last_modified":this_obj[i].last_modified, | |
| "private":this_obj[i].private, | |
| "gated":this_obj[i].gated, | |
| "disabled":this_obj[i].disabled, | |
| "downloads":this_obj[i].downloads, | |
| "likes":this_obj[i].likes, | |
| "library_name":this_obj[i].library_name, | |
| "tags":this_obj[i].tags, | |
| "pipeline_tag":this_obj[i].pipeline_tag, | |
| }) | |
| #print (return_list) | |
| c=0 | |
| rl = len(return_list) | |
| print(rl) | |
| for i in str(return_list): | |
| if i == " " or i==",": | |
| c +=1 | |
| print (c) | |
| if rl > MAX_DATA: | |
| print("compressing...") | |
| return_list = compress_data(rl,purpose,task,return_list) | |
| history = "observation: the search results are:\n {}\n".format(return_list) | |
| return "COMPLETE", None, history, task | |
| else: | |
| history = "observation: I need to trigger a search using the following syntax:\naction: SEARCH action_input=SEARCH_QUERY\n" | |
| return "UPDATE-TASK", None, history, task | |
| except Exception as e: | |
| print (e) | |
| history = "observation: I need to trigger a search using the following syntax:\naction: SEARCH action_input=SEARCH_QUERY\n" | |
| return "UPDATE-TASK", None, history, task | |
| #else: | |
| # history = "observation: The search query I used did not return a valid response" | |
| return "MAIN", None, history, task | |
| def run_gpt( | |
| prompt_template, | |
| stop_tokens, | |
| max_tokens, | |
| seed, | |
| purpose, | |
| **prompt_kwargs, | |
| ): | |
| timestamp=datetime.datetime.now() | |
| print(seed) | |
| generate_kwargs = dict( | |
| temperature=0.9, | |
| max_new_tokens=max_tokens, | |
| top_p=0.95, | |
| repetition_penalty=1.0, | |
| do_sample=True, | |
| seed=seed, | |
| ) | |
| content = PREFIX.format( | |
| timestamp=timestamp, | |
| purpose=purpose, | |
| ) + prompt_template.format(**prompt_kwargs) | |
| if VERBOSE: | |
| print(LOG_PROMPT.format(content)) | |
| #formatted_prompt = format_prompt(f"{system_prompt}, {prompt}", history) | |
| #formatted_prompt = format_prompt(f'{content}', history) | |
| stream = client.text_generation(content, **generate_kwargs, stream=True, details=True, return_full_text=False) | |
| resp = "" | |
| for response in stream: | |
| resp += response.token.text | |
| #yield resp | |
| if VERBOSE: | |
| print(LOG_RESPONSE.format(resp)) | |
| return resp | |
| def compress_data(c,purpose, task, history): | |
| seed=random.randint(1,1000000000) | |
| print (c) | |
| #tot=len(purpose) | |
| #print(tot) | |
| divr=int(c)/MAX_DATA | |
| divi=int(divr)+1 if divr != int(divr) else int(divr) | |
| chunk = int(int(c)/divr) | |
| print(f'chunk:: {chunk}') | |
| print(f'divr:: {divr}') | |
| print (f'divi:: {divi}') | |
| out = [] | |
| #out="" | |
| s=0 | |
| e=chunk | |
| print(f'e:: {e}') | |
| new_history="" | |
| task = f'Compile this data to fulfill the task: {task}, and complete the purpose: {purpose}\n' | |
| for z in range(divi): | |
| print(f's:e :: {s}:{e}') | |
| hist = history[s:e] | |
| resp = run_gpt( | |
| COMPRESS_DATA_PROMPT_SMALL, | |
| stop_tokens=["observation:", "task:", "action:", "thought:"], | |
| max_tokens=2048, | |
| seed=seed, | |
| purpose=purpose, | |
| task=task, | |
| knowledge=new_history, | |
| history=hist, | |
| ) | |
| new_history = resp | |
| print (resp) | |
| out+=resp | |
| e=e+chunk | |
| s=s+chunk | |
| ''' | |
| resp = run_gpt( | |
| COMPRESS_DATA_PROMPT, | |
| stop_tokens=["observation:", "task:", "action:", "thought:"], | |
| max_tokens=1024, | |
| seed=seed, | |
| purpose=purpose, | |
| task=task, | |
| knowledge=new_history, | |
| history="All data has been recieved.", | |
| )''' | |
| print ("final" + resp) | |
| history = "observation: {}\n".format(resp) | |
| return history | |
| def compress_history(purpose, task, history): | |
| resp = run_gpt( | |
| COMPRESS_HISTORY_PROMPT, | |
| stop_tokens=["observation:", "task:", "action:", "thought:"], | |
| max_tokens=512, | |
| seed=random.randint(1,1000000000), | |
| purpose=purpose, | |
| task=task, | |
| history=history, | |
| ) | |
| history = "observation: {}\n".format(resp) | |
| return history | |
| def call_main(purpose, task, history, action_input): | |
| resp = run_gpt( | |
| FINDER, | |
| stop_tokens=["observation:", "task:", "action:"], | |
| max_tokens=512, | |
| seed=random.randint(1,1000000000), | |
| purpose=purpose, | |
| task=task, | |
| history=history, | |
| ) | |
| lines = resp.strip().strip("\n").split("\n") | |
| for line in lines: | |
| if line == "": | |
| continue | |
| if line.startswith("thought: "): | |
| history += "{}\n".format(line) | |
| if line.startswith("action: COMPLETE"): | |
| print("COMPLETE called") | |
| return "COMPLETE", None, history, task | |
| if line.startswith("action:"): | |
| action_name, action_input = parse_action(line) | |
| print(f'ACTION::{action_name} -- INPUT :: {action_input}') | |
| history += "{}\n".format(line) | |
| return action_name, action_input, history, task | |
| else: | |
| history += "observation: {}\n".format(line) | |
| #assert False, "unknown action: {}".format(line) | |
| #return "UPDATE-TASK", None, history, task | |
| if "VERBOSE": | |
| print(history) | |
| return "MAIN", None, history, task | |
| def call_set_task(purpose, task, history, action_input): | |
| task = run_gpt( | |
| TASK_PROMPT, | |
| stop_tokens=[], | |
| max_tokens=1024, | |
| seed=random.randint(1,1000000000), | |
| purpose=purpose, | |
| task=task, | |
| history=history, | |
| ).strip("\n") | |
| history += "observation: task has been updated to: {}\n".format(task) | |
| return "MAIN", None, history, task | |
| ########################################################### | |
| def search_all(url): | |
| source="" | |
| return source | |
| def find_all(purpose,task,history, url): | |
| return_list=[] | |
| print (url) | |
| #if action_input in query.tasks: | |
| print ("trying") | |
| try: | |
| if url != "" and url != None: | |
| rawp = [] | |
| source = urllib.request.urlopen(url).read() | |
| soup = bs4.BeautifulSoup(source,'lxml') | |
| # title of the page | |
| print(soup.title) | |
| # get attributes: | |
| print(soup.title.name) | |
| # get values: | |
| print(soup.title.string) | |
| # beginning navigation: | |
| print(soup.title.parent.name) | |
| #rawp.append([tag.name for tag in soup.find_all()] ) | |
| print([tag.name for tag in soup.find_all()]) | |
| rawp=soup.text | |
| c=0 | |
| rl = len(rawp) | |
| print(rl) | |
| for i in str(rawp): | |
| if i == " " or i==",": | |
| c +=1 | |
| print (c) | |
| if c > MAX_DATA: | |
| print("compressing...") | |
| rawp = compress_data(c,purpose,task,rawp) | |
| print (rawp) | |
| history += "observation: the search results are:\n {}\n".format(rawp) | |
| task = "complete?" | |
| return "MAIN", None, history, task | |
| else: | |
| history += "observation: I need to trigger a search using the following syntax:\naction: WEBSITE_SCRAPE action_input=SEARCH_QUERY\n" | |
| return "MAIN", None, history, task | |
| except Exception as e: | |
| print (e) | |
| history += "observation: I need to trigger a search using the following syntax:\naction: WEBSITE_SCRAPE action_input=SEARCH_QUERY\n" | |
| return "MAIN", None, history, task | |
| #else: | |
| # history = "observation: The search query I used did not return a valid response" | |
| return "MAIN", None, history, task | |
| def find_it(url,q=None,num=None): | |
| out = [] | |
| out_l = [] | |
| z="" | |
| source = urllib.request.urlopen(url).read() | |
| soup = bs4.BeautifulSoup(source,'lxml') | |
| for p in soup.find_all(f'{q}'): | |
| if num != "": | |
| z=p.get(f'{num}') | |
| try: | |
| test = soup.select(f'{p.name}:first-child') | |
| #print(p.findChildren()) | |
| except Exception as e: | |
| print (e) | |
| #out.append(p) | |
| out.append([{q:p.string,"additional":z,"parent":p.parent.name,"previous":[b for b in p.previous],"first-child":[b.name for b in p.children],"content":p}]) | |
| if p.string !=None: | |
| out_l.append(p.string) | |
| else: | |
| out_l.append(z) | |
| #out.append(p.parent.name) | |
| print(dir(p)) | |
| print(p.parent.name) | |
| for url in soup.find_all('a'): | |
| print(url.get('href')) | |
| #print(soup.get_text()) | |
| return out,out_l | |
| def find_it2(url): | |
| response = requests.get(url,a1=None,q2=None,q3=None) | |
| try: | |
| response.raise_for_status() | |
| soup = BeautifulSoup(response.content, 'lxml') | |
| out = 'URL Links:\n'.join([p.text for p in soup.find_all('a')]) | |
| return out | |
| except Exception as e: | |
| print (e) | |
| return e | |
| ################################# | |
| NAME_TO_FUNC = { | |
| "MAIN": call_main, | |
| "UPDATE-TASK": call_set_task, | |
| "SEARCH_ENGINE": find_all, | |
| "WEBSITE_SCRAPE": find_all, | |
| } | |
| def run_action(purpose, task, history, action_name, action_input): | |
| if action_name == "COMPLETE": | |
| print("Complete - Exiting") | |
| #exit(0) | |
| return "COMPLETE", None, history, task | |
| # compress the history when it is long | |
| if len(history.split("\n")) > MAX_HISTORY: | |
| if VERBOSE: | |
| print("COMPRESSING HISTORY") | |
| history = compress_history(purpose, task, history) | |
| if action_name in NAME_TO_FUNC: | |
| assert action_name in NAME_TO_FUNC | |
| print("RUN: ", action_name, action_input) | |
| return NAME_TO_FUNC[action_name](purpose, task, history, action_input) | |
| else: | |
| history += "observation: The TOOL I tried to use returned an error, I need to select a tool from: (UPDATE-TASK, SEARCH_ENGINE, WEBSITE_SCRAPE, COMPLETE)\n" | |
| return "MAIN", None, history, task | |
| def run(purpose,history): | |
| task=None | |
| history = "" | |
| #if not history: | |
| # history = [] | |
| action_name = "SEARCH_ENGINE" if task is None else "MAIN" | |
| action_input = None | |
| while True: | |
| print("") | |
| print("") | |
| print("---") | |
| #print("purpose:", purpose) | |
| print("task:", task) | |
| print("---") | |
| #print(history) | |
| print("---") | |
| action_name, action_input, history, task = run_action( | |
| purpose, | |
| task, | |
| history, | |
| action_name, | |
| action_input, | |
| ) | |
| yield history | |
| if action_name == "COMPLETE": | |
| return history | |
| examples =[ | |
| "find the most popular model that I can use to generate an image by providing a text prompt", | |
| "return the top 10 models that I can use to identify objects in images", | |
| "which models have the most likes from each category?" | |
| ] | |
| gr.ChatInterface( | |
| fn=run, | |
| chatbot=gr.Chatbot(show_label=False, show_share_button=False, show_copy_button=True, likeable=True, layout="panel"), | |
| title="Mixtral 46.7B Powered <br> Search", | |
| examples=examples, | |
| concurrency_limit=20, | |
| ).launch(show_api=False) | |
| ''' | |
| with gr.Blocks() as app: | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| inp = gr.Textbox() | |
| with gr.Column(scale=2): | |
| q = gr.Textbox(value="p") | |
| with gr.Column(scale=2): | |
| num = gr.Textbox() | |
| with gr.Row(): | |
| all_btn = gr.Button("Load") | |
| find_btn = gr.Button("Find") | |
| with gr.Row(): | |
| rawp = gr.JSON() | |
| outp = gr.JSON() | |
| outl = gr.Textbox() | |
| all_btn.click(find_all,[inp,q,num],[rawp]) | |
| find_btn.click(find_it,[inp,q,num],[outp,outl]) | |
| app.launch() | |
| ''' |