Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,51 +4,13 @@ import os
|
|
| 4 |
from PIL import Image
|
| 5 |
from typing import Optional
|
| 6 |
from huggingface_hub import InferenceClient
|
| 7 |
-
import tempfile
|
| 8 |
-
import json
|
| 9 |
-
import uuid
|
| 10 |
-
import re
|
| 11 |
|
| 12 |
-
# Project by Nymbo
|
| 13 |
|
| 14 |
-
# Configuration
|
| 15 |
API_TOKEN = os.getenv("HF_READ_TOKEN")
|
| 16 |
timeout = 100
|
| 17 |
|
| 18 |
-
#
|
| 19 |
-
def _slugify_for_subdomain(s: str) -> str:
|
| 20 |
-
s = s.strip().lower()
|
| 21 |
-
s = s.replace(".", "-").replace("_", "-").replace(" ", "-")
|
| 22 |
-
s = re.sub(r"[^a-z0-9-]", "-", s)
|
| 23 |
-
s = re.sub(r"-+", "-", s).strip("-")
|
| 24 |
-
return s
|
| 25 |
-
|
| 26 |
-
def _build_public_base_url() -> str:
|
| 27 |
-
# Allow explicit override via env
|
| 28 |
-
for var in ("HF_SPACE_URL", "SPACE_URL", "PUBLIC_SPACE_URL"):
|
| 29 |
-
val = os.getenv(var)
|
| 30 |
-
if val:
|
| 31 |
-
return val.rstrip("/")
|
| 32 |
-
|
| 33 |
-
space_id = os.getenv("SPACE_ID")
|
| 34 |
-
if space_id:
|
| 35 |
-
# If a full URL was provided, use it directly
|
| 36 |
-
if space_id.startswith("http://") or space_id.startswith("https://"):
|
| 37 |
-
return space_id.rstrip("/")
|
| 38 |
-
# Typical HF Spaces SPACE_ID is "owner/space-name"
|
| 39 |
-
if "/" in space_id:
|
| 40 |
-
owner, space = space_id.split("/", 1)
|
| 41 |
-
sub = f"{_slugify_for_subdomain(owner)}-{_slugify_for_subdomain(space)}"
|
| 42 |
-
else:
|
| 43 |
-
# Fall back to slugifying the whole string
|
| 44 |
-
sub = _slugify_for_subdomain(space_id)
|
| 45 |
-
return f"https://{sub}.hf.space"
|
| 46 |
-
|
| 47 |
-
# Local fallback
|
| 48 |
-
host = os.getenv("GRADIO_SERVER_NAME", "localhost")
|
| 49 |
-
port = os.getenv("GRADIO_SERVER_PORT", os.getenv("PORT", "7860"))
|
| 50 |
-
return f"http://{host}:{port}"
|
| 51 |
-
|
| 52 |
def flux_krea_generate(
|
| 53 |
prompt: str,
|
| 54 |
negative_prompt: str = "(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos",
|
|
@@ -59,44 +21,39 @@ def flux_krea_generate(
|
|
| 59 |
strength: float = 0.7,
|
| 60 |
width: int = 1024,
|
| 61 |
height: int = 1024
|
| 62 |
-
) ->
|
| 63 |
"""
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
This
|
| 67 |
-
FLUX.1-Krea-dev model
|
| 68 |
-
excels at generating natural-looking images without typical AI artifacts, making it ideal
|
| 69 |
-
for product photography, e-commerce visuals, concept art, fashion photography, and stock images.
|
| 70 |
|
| 71 |
Args:
|
| 72 |
-
prompt:
|
| 73 |
-
negative_prompt:
|
| 74 |
-
steps: Number of denoising steps (1-100). Higher
|
| 75 |
-
cfg_scale: Classifier-free guidance scale (1-20). Higher
|
| 76 |
-
sampler: Sampling method
|
| 77 |
-
seed: Random seed for reproducible results. Use -1 for random
|
| 78 |
-
strength: Generation strength
|
| 79 |
-
width: Output
|
| 80 |
-
height: Output
|
| 81 |
|
| 82 |
Returns:
|
| 83 |
-
|
| 84 |
"""
|
| 85 |
-
if
|
| 86 |
-
return
|
| 87 |
-
"success": False,
|
| 88 |
-
"error": "Prompt is required and cannot be empty",
|
| 89 |
-
"image_url": None
|
| 90 |
-
})
|
| 91 |
|
| 92 |
-
|
| 93 |
|
| 94 |
-
#
|
| 95 |
enhanced_prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
|
| 96 |
-
print(f'\033[
|
| 97 |
|
| 98 |
try:
|
| 99 |
-
# Initialize the Hugging Face Inference Client
|
|
|
|
| 100 |
providers = ["auto", "replicate", "fal-ai"]
|
| 101 |
|
| 102 |
for provider in providers:
|
|
@@ -106,7 +63,7 @@ def flux_krea_generate(
|
|
| 106 |
provider=provider
|
| 107 |
)
|
| 108 |
|
| 109 |
-
# Generate the image using
|
| 110 |
image = client.text_to_image(
|
| 111 |
prompt=enhanced_prompt,
|
| 112 |
negative_prompt=negative_prompt,
|
|
@@ -118,265 +75,92 @@ def flux_krea_generate(
|
|
| 118 |
seed=seed if seed != -1 else random.randint(1, 1000000000)
|
| 119 |
)
|
| 120 |
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
# Save to a temporary file that Gradio can serve
|
| 124 |
-
temp_file = tempfile.NamedTemporaryFile(
|
| 125 |
-
delete=False,
|
| 126 |
-
suffix=".png",
|
| 127 |
-
prefix=f"flux_krea_mcp_{generation_id}_"
|
| 128 |
-
)
|
| 129 |
-
image.save(temp_file.name)
|
| 130 |
-
temp_file.close()
|
| 131 |
-
|
| 132 |
-
# Create the Gradio file URL that will be accessible to MCP clients
|
| 133 |
-
# This matches the format you saw: /gradio_api/file=<file_path>
|
| 134 |
-
gradio_file_url = f"/gradio_api/file={temp_file.name}"
|
| 135 |
-
|
| 136 |
-
# Build a proper public base URL (HF Spaces or local)
|
| 137 |
-
base_url = _build_public_base_url()
|
| 138 |
-
full_url = f"{base_url}{gradio_file_url}"
|
| 139 |
-
|
| 140 |
-
print(f'\033[1mMCP Generation {generation_id} completed with {provider}!\033[0m')
|
| 141 |
-
print(f'🌐 Image accessible at: {full_url}')
|
| 142 |
-
|
| 143 |
-
# Return JSON with accessible URLs and metadata
|
| 144 |
-
result = {
|
| 145 |
-
"success": True,
|
| 146 |
-
"image_url": full_url,
|
| 147 |
-
"gradio_file_url": gradio_file_url,
|
| 148 |
-
"local_path": temp_file.name,
|
| 149 |
-
"generation_id": generation_id,
|
| 150 |
-
"provider": provider,
|
| 151 |
-
"model": "black-forest-labs/FLUX.1-Krea-dev",
|
| 152 |
-
"prompt": enhanced_prompt,
|
| 153 |
-
"parameters": {
|
| 154 |
-
"width": width,
|
| 155 |
-
"height": height,
|
| 156 |
-
"steps": steps,
|
| 157 |
-
"cfg_scale": cfg_scale,
|
| 158 |
-
"seed": seed if seed != -1 else "random",
|
| 159 |
-
"sampler": sampler
|
| 160 |
-
},
|
| 161 |
-
"metadata": {
|
| 162 |
-
"tool": "flux_krea_generate",
|
| 163 |
-
"timestamp": str(generation_id),
|
| 164 |
-
"mcp_compatible": True,
|
| 165 |
-
"accessible_url": full_url
|
| 166 |
-
}
|
| 167 |
-
}
|
| 168 |
-
|
| 169 |
-
return json.dumps(result)
|
| 170 |
|
| 171 |
except Exception as provider_error:
|
| 172 |
print(f"Provider {provider} failed: {provider_error}")
|
| 173 |
-
if provider == providers[-1]: # Last provider
|
| 174 |
raise provider_error
|
| 175 |
continue
|
| 176 |
|
| 177 |
except Exception as e:
|
| 178 |
-
print(f"Error during
|
| 179 |
-
error_message = "Image generation failed due to an unknown error."
|
| 180 |
-
|
| 181 |
if "404" in str(e):
|
| 182 |
-
|
| 183 |
elif "503" in str(e):
|
| 184 |
-
|
| 185 |
elif "401" in str(e) or "403" in str(e):
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
"error": error_message,
|
| 191 |
-
"image_url": None,
|
| 192 |
-
"gradio_file_url": None,
|
| 193 |
-
"local_path": None,
|
| 194 |
-
"generation_id": generation_id,
|
| 195 |
-
"metadata": {
|
| 196 |
-
"tool": "flux_krea_generate",
|
| 197 |
-
"mcp_compatible": True,
|
| 198 |
-
"error": True
|
| 199 |
-
}
|
| 200 |
-
})
|
| 201 |
-
|
| 202 |
-
# For UI compatibility - this function returns a PIL Image for the Gradio interface
|
| 203 |
-
def flux_krea_generate_ui(*args) -> Optional[Image.Image]:
|
| 204 |
-
"""UI wrapper that returns PIL Image for Gradio interface"""
|
| 205 |
-
result_json = flux_krea_generate(*args)
|
| 206 |
-
try:
|
| 207 |
-
result = json.loads(result_json)
|
| 208 |
-
if result.get("success") and result.get("local_path"):
|
| 209 |
-
# Return the PIL Image for the UI
|
| 210 |
-
return Image.open(result["local_path"])
|
| 211 |
-
except Exception as e:
|
| 212 |
-
print(f"UI wrapper error: {e}")
|
| 213 |
-
pass
|
| 214 |
-
return None
|
| 215 |
|
| 216 |
-
# CSS
|
| 217 |
css = """
|
| 218 |
#app-container {
|
| 219 |
-
max-width:
|
| 220 |
margin-left: auto;
|
| 221 |
margin-right: auto;
|
| 222 |
}
|
| 223 |
-
.mcp-badge {
|
| 224 |
-
background: linear-gradient(45deg, #ff6b6b, #4ecdc4);
|
| 225 |
-
color: white;
|
| 226 |
-
padding: 5px 10px;
|
| 227 |
-
border-radius: 15px;
|
| 228 |
-
font-size: 12px;
|
| 229 |
-
font-weight: bold;
|
| 230 |
-
}
|
| 231 |
"""
|
| 232 |
|
| 233 |
-
# Build the Gradio
|
| 234 |
-
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css
|
| 235 |
-
#
|
| 236 |
-
gr.HTML(""
|
| 237 |
-
<center>
|
| 238 |
-
<h1>🚀 FLUX.1-Krea-dev <span class="mcp-badge">MCP SERVER</span></h1>
|
| 239 |
-
<p>High-quality serverless image generation via Model Context Protocol</p>
|
| 240 |
-
<p><em>Professional-grade images • No AI artifacts • MCP-compatible</em></p>
|
| 241 |
-
</center>
|
| 242 |
-
""")
|
| 243 |
|
| 244 |
-
#
|
| 245 |
with gr.Column(elem_id="app-container"):
|
| 246 |
-
#
|
| 247 |
-
with gr.Row():
|
| 248 |
-
text_prompt = gr.Textbox(
|
| 249 |
-
label="Image Prompt",
|
| 250 |
-
placeholder="Describe the image you want to generate (60-70 words recommended)",
|
| 251 |
-
lines=3,
|
| 252 |
-
elem_id="prompt-text-input"
|
| 253 |
-
)
|
| 254 |
-
|
| 255 |
-
# Advanced settings accordion
|
| 256 |
with gr.Row():
|
| 257 |
-
with gr.
|
| 258 |
-
negative_prompt = gr.Textbox(
|
| 259 |
-
label="Negative Prompt",
|
| 260 |
-
placeholder="What should NOT be in the image",
|
| 261 |
-
value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos",
|
| 262 |
-
lines=3,
|
| 263 |
-
elem_id="negative-prompt-text-input"
|
| 264 |
-
)
|
| 265 |
-
|
| 266 |
-
with gr.Row():
|
| 267 |
-
width = gr.Slider(
|
| 268 |
-
label="Width",
|
| 269 |
-
value=1024,
|
| 270 |
-
minimum=64,
|
| 271 |
-
maximum=1216,
|
| 272 |
-
step=32,
|
| 273 |
-
info="Output width in pixels"
|
| 274 |
-
)
|
| 275 |
-
height = gr.Slider(
|
| 276 |
-
label="Height",
|
| 277 |
-
value=1024,
|
| 278 |
-
minimum=64,
|
| 279 |
-
maximum=1216,
|
| 280 |
-
step=32,
|
| 281 |
-
info="Output height in pixels"
|
| 282 |
-
)
|
| 283 |
-
|
| 284 |
with gr.Row():
|
| 285 |
-
|
| 286 |
-
label="Sampling Steps",
|
| 287 |
-
value=35,
|
| 288 |
-
minimum=1,
|
| 289 |
-
maximum=100,
|
| 290 |
-
step=1,
|
| 291 |
-
info="More steps = higher quality, longer generation time"
|
| 292 |
-
)
|
| 293 |
-
cfg = gr.Slider(
|
| 294 |
-
label="CFG Scale",
|
| 295 |
-
value=7,
|
| 296 |
-
minimum=1,
|
| 297 |
-
maximum=20,
|
| 298 |
-
step=1,
|
| 299 |
-
info="How closely to follow the prompt"
|
| 300 |
-
)
|
| 301 |
|
|
|
|
| 302 |
with gr.Row():
|
| 303 |
-
|
| 304 |
-
label="
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
|
| 312 |
-
label="
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
maximum=1000000000,
|
| 316 |
-
step=1,
|
| 317 |
-
info="Use -1 for random seed"
|
| 318 |
-
)
|
| 319 |
-
|
| 320 |
-
sampler = gr.Radio(
|
| 321 |
-
label="Sampling Method",
|
| 322 |
-
value="DPM++ 2M Karras",
|
| 323 |
-
choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"],
|
| 324 |
-
info="Algorithm used for image generation"
|
| 325 |
-
)
|
| 326 |
-
|
| 327 |
-
# Generation button
|
| 328 |
with gr.Row():
|
| 329 |
-
|
| 330 |
|
| 331 |
-
#
|
| 332 |
with gr.Row():
|
| 333 |
-
|
| 334 |
-
|
| 335 |
-
elem_id="gallery",
|
| 336 |
-
show_share_button=True,
|
| 337 |
-
show_download_button=True
|
| 338 |
-
)
|
| 339 |
|
| 340 |
-
#
|
| 341 |
-
|
| 342 |
-
|
| 343 |
-
|
| 344 |
-
|
| 345 |
-
<p><strong>Server Endpoint:</strong> <code>/gradio_api/mcp/sse</code></p>
|
| 346 |
-
<p><strong>Tool Name:</strong> <code>flux_krea_generate</code></p>
|
| 347 |
-
<p><strong>Image URLs:</strong> Returns accessible Gradio file URLs like <code>/gradio_api/file=<path></code></p>
|
| 348 |
-
<p>This server exposes the image generation function as an MCP tool that returns JSON with accessible image URLs for LLM integration.</p>
|
| 349 |
-
<p><em>✅ Fixed: LLMs can now access generated images via proper Gradio file URLs</em></p>
|
| 350 |
-
</div>
|
| 351 |
-
""")
|
| 352 |
-
|
| 353 |
-
# Wire up the UI event (this is separate from the MCP tool)
|
| 354 |
-
generate_button.click(
|
| 355 |
-
flux_krea_generate_ui,
|
| 356 |
-
inputs=[text_prompt, negative_prompt, steps, cfg, sampler, seed, strength, width, height],
|
| 357 |
outputs=image_output,
|
| 358 |
-
show_api=False
|
|
|
|
| 359 |
)
|
| 360 |
|
| 361 |
-
# Expose
|
|
|
|
| 362 |
gr.api(
|
| 363 |
flux_krea_generate,
|
| 364 |
-
api_name="
|
| 365 |
api_description=(
|
| 366 |
-
"
|
| 367 |
-
"
|
| 368 |
-
|
| 369 |
-
)
|
| 370 |
)
|
| 371 |
|
| 372 |
-
# Launch with MCP server enabled
|
| 373 |
-
|
| 374 |
-
# Enable MCP server functionality
|
| 375 |
-
app.launch(
|
| 376 |
-
mcp_server=True,
|
| 377 |
-
show_api=True,
|
| 378 |
-
share=False,
|
| 379 |
-
server_name="0.0.0.0",
|
| 380 |
-
server_port=7860,
|
| 381 |
-
show_error=True
|
| 382 |
-
)
|
|
|
|
| 4 |
from PIL import Image
|
| 5 |
from typing import Optional
|
| 6 |
from huggingface_hub import InferenceClient
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
# Project by Nymbo
|
| 9 |
|
|
|
|
| 10 |
API_TOKEN = os.getenv("HF_READ_TOKEN")
|
| 11 |
timeout = 100
|
| 12 |
|
| 13 |
+
# Function to query the API and return the generated image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
def flux_krea_generate(
|
| 15 |
prompt: str,
|
| 16 |
negative_prompt: str = "(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos",
|
|
|
|
| 21 |
strength: float = 0.7,
|
| 22 |
width: int = 1024,
|
| 23 |
height: int = 1024
|
| 24 |
+
) -> Optional[Image.Image]:
|
| 25 |
"""
|
| 26 |
+
Text-to-image generation with FLUX.1-Krea-dev (no input image required).
|
| 27 |
+
|
| 28 |
+
This tool generates a single image from a text prompt using the
|
| 29 |
+
black-forest-labs/FLUX.1-Krea-dev model on Hugging Face Inference.
|
|
|
|
|
|
|
| 30 |
|
| 31 |
Args:
|
| 32 |
+
prompt: Text description of the image to generate.
|
| 33 |
+
negative_prompt: What should NOT appear in the image.
|
| 34 |
+
steps: Number of denoising steps (1-100). Higher is slower but can improve quality.
|
| 35 |
+
cfg_scale: Classifier-free guidance scale (1-20). Higher = follow the prompt more closely.
|
| 36 |
+
sampler: Sampling method to use. One of: "DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM".
|
| 37 |
+
seed: Random seed for reproducible results. Use -1 for a random seed per call.
|
| 38 |
+
strength: Generation strength (0-1). Kept for parity; not an input image strength.
|
| 39 |
+
width: Output width in pixels (64-1216, multiple of 32 recommended).
|
| 40 |
+
height: Output height in pixels (64-1216, multiple of 32 recommended).
|
| 41 |
|
| 42 |
Returns:
|
| 43 |
+
A PIL.Image of the generated result. No input image is expected or required.
|
| 44 |
"""
|
| 45 |
+
if prompt == "" or prompt is None:
|
| 46 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
+
key = random.randint(0, 999)
|
| 49 |
|
| 50 |
+
# Add some extra flair to the prompt
|
| 51 |
enhanced_prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
|
| 52 |
+
print(f'\033[1mGeneration {key}:\033[0m {enhanced_prompt}')
|
| 53 |
|
| 54 |
try:
|
| 55 |
+
# Initialize the Hugging Face Inference Client
|
| 56 |
+
# Try different providers in order of preference
|
| 57 |
providers = ["auto", "replicate", "fal-ai"]
|
| 58 |
|
| 59 |
for provider in providers:
|
|
|
|
| 63 |
provider=provider
|
| 64 |
)
|
| 65 |
|
| 66 |
+
# Generate the image using the proper client
|
| 67 |
image = client.text_to_image(
|
| 68 |
prompt=enhanced_prompt,
|
| 69 |
negative_prompt=negative_prompt,
|
|
|
|
| 75 |
seed=seed if seed != -1 else random.randint(1, 1000000000)
|
| 76 |
)
|
| 77 |
|
| 78 |
+
print(f'\033[1mGeneration {key} completed with {provider}!\033[0m ({enhanced_prompt})')
|
| 79 |
+
return image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
except Exception as provider_error:
|
| 82 |
print(f"Provider {provider} failed: {provider_error}")
|
| 83 |
+
if provider == providers[-1]: # Last provider
|
| 84 |
raise provider_error
|
| 85 |
continue
|
| 86 |
|
| 87 |
except Exception as e:
|
| 88 |
+
print(f"Error during image generation: {e}")
|
|
|
|
|
|
|
| 89 |
if "404" in str(e):
|
| 90 |
+
raise gr.Error("Model not found. Please ensure the FLUX.1-Krea-dev model is accessible with your API token.")
|
| 91 |
elif "503" in str(e):
|
| 92 |
+
raise gr.Error("The model is currently being loaded. Please try again in a moment.")
|
| 93 |
elif "401" in str(e) or "403" in str(e):
|
| 94 |
+
raise gr.Error("Authentication failed. Please check your HF_READ_TOKEN environment variable.")
|
| 95 |
+
else:
|
| 96 |
+
raise gr.Error(f"Image generation failed: {str(e)}")
|
| 97 |
+
return None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
|
| 99 |
+
# CSS to style the app
|
| 100 |
css = """
|
| 101 |
#app-container {
|
| 102 |
+
max-width: 800px;
|
| 103 |
margin-left: auto;
|
| 104 |
margin-right: auto;
|
| 105 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 106 |
"""
|
| 107 |
|
| 108 |
+
# Build the Gradio UI with Blocks
|
| 109 |
+
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
|
| 110 |
+
# Add a title to the app
|
| 111 |
+
gr.HTML("<center><h1>FLUX.1-Krea-dev</h1></center>")
|
| 112 |
+
gr.HTML("<center><p>High-quality image generation via Model Context Protocol</p></center>")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 113 |
|
| 114 |
+
# Container for all the UI elements
|
| 115 |
with gr.Column(elem_id="app-container"):
|
| 116 |
+
# Add a text input for the main prompt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
with gr.Row():
|
| 118 |
+
with gr.Column(elem_id="prompt-container"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
with gr.Row():
|
| 120 |
+
text_prompt = gr.Textbox(label="Prompt", placeholder="Enter a prompt here", lines=2, elem_id="prompt-text-input")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
|
| 122 |
+
# Accordion for advanced settings
|
| 123 |
with gr.Row():
|
| 124 |
+
with gr.Accordion("Advanced Settings", open=False):
|
| 125 |
+
negative_prompt = gr.Textbox(label="Negative Prompt", placeholder="What should not be in the image", value="(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos", lines=3, elem_id="negative-prompt-text-input")
|
| 126 |
+
with gr.Row():
|
| 127 |
+
width = gr.Slider(label="Width", value=1024, minimum=64, maximum=1216, step=32)
|
| 128 |
+
height = gr.Slider(label="Height", value=1024, minimum=64, maximum=1216, step=32)
|
| 129 |
+
steps = gr.Slider(label="Sampling steps", value=35, minimum=1, maximum=100, step=1)
|
| 130 |
+
cfg = gr.Slider(label="CFG Scale", value=7, minimum=1, maximum=20, step=1)
|
| 131 |
+
strength = gr.Slider(label="Strength", value=0.7, minimum=0, maximum=1, step=0.001)
|
| 132 |
+
seed = gr.Slider(label="Seed", value=-1, minimum=-1, maximum=1000000000, step=1) # Setting the seed to -1 will make it random
|
| 133 |
+
method = gr.Radio(label="Sampling method", value="DPM++ 2M Karras", choices=["DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM"])
|
| 134 |
+
|
| 135 |
+
# Add a button to trigger the image generation
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
with gr.Row():
|
| 137 |
+
text_button = gr.Button("Run", variant='primary', elem_id="gen-button")
|
| 138 |
|
| 139 |
+
# Image output area to display the generated image
|
| 140 |
with gr.Row():
|
| 141 |
+
# Output component only; no input image is required by the tool
|
| 142 |
+
image_output = gr.Image(label="Image Output", elem_id="gallery")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 143 |
|
| 144 |
+
# Bind the button to the flux_krea_generate function for the UI only
|
| 145 |
+
# Hide this event as an MCP tool to avoid schema confusion (UI wires image output)
|
| 146 |
+
text_button.click(
|
| 147 |
+
flux_krea_generate,
|
| 148 |
+
inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
outputs=image_output,
|
| 150 |
+
show_api=False,
|
| 151 |
+
api_description=False,
|
| 152 |
)
|
| 153 |
|
| 154 |
+
# Expose a dedicated MCP/API endpoint with a clear schema (text-to-image only)
|
| 155 |
+
# This avoids clients misinterpreting the UI event as requiring an input image.
|
| 156 |
gr.api(
|
| 157 |
flux_krea_generate,
|
| 158 |
+
api_name="generate_image",
|
| 159 |
api_description=(
|
| 160 |
+
"Generate an image from a text prompt using FLUX.1-Krea-dev. "
|
| 161 |
+
"Inputs are text and numeric parameters only; no input image is required."
|
| 162 |
+
),
|
|
|
|
| 163 |
)
|
| 164 |
|
| 165 |
+
# Launch the Gradio app with MCP server enabled
|
| 166 |
+
app.launch(show_api=True, share=False, mcp_server=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|