Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -4,9 +4,9 @@ import io
|
|
| 4 |
import random
|
| 5 |
import os
|
| 6 |
import time
|
| 7 |
-
from typing import Optional
|
| 8 |
from PIL import Image
|
| 9 |
import json
|
|
|
|
| 10 |
|
| 11 |
# Project by Nymbo
|
| 12 |
|
|
@@ -15,76 +15,63 @@ API_TOKEN = os.getenv("HF_READ_TOKEN")
|
|
| 15 |
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
| 16 |
timeout = 100
|
| 17 |
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
|
|
|
| 21 |
steps: int = 35,
|
| 22 |
-
cfg_scale: float = 7,
|
| 23 |
sampler: str = "DPM++ 2M Karras",
|
| 24 |
seed: int = -1,
|
| 25 |
strength: float = 0.7,
|
| 26 |
width: int = 1024,
|
| 27 |
-
height: int = 1024
|
| 28 |
) -> Optional[Image.Image]:
|
| 29 |
-
"""
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
| 34 |
Args:
|
| 35 |
-
prompt:
|
| 36 |
-
negative_prompt: Text describing what should
|
| 37 |
-
steps: Number of denoising steps (
|
| 38 |
-
cfg_scale: Classifier-free guidance scale (
|
| 39 |
-
sampler: Sampling
|
| 40 |
-
seed: Random seed. Use -1 for
|
| 41 |
-
strength:
|
| 42 |
-
width:
|
| 43 |
-
height:
|
| 44 |
-
|
| 45 |
Returns:
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
Raises:
|
| 49 |
-
gr.Error: If the backend returns a non-200 HTTP status.
|
| 50 |
"""
|
| 51 |
-
if
|
| 52 |
return None
|
| 53 |
|
| 54 |
key = random.randint(0, 999)
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
# Slightly augment the prompt for higher quality
|
| 63 |
-
prompt_aug = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
|
| 64 |
-
print(f'\033[1mGeneration {key}:\033[0m {prompt_aug}')
|
| 65 |
-
|
| 66 |
-
# Compute seed value
|
| 67 |
-
seed_value = seed if seed != -1 else random.randint(1, 1_000_000_000)
|
| 68 |
-
|
| 69 |
-
# Prepare payload aligned with HF Inference API conventions
|
| 70 |
-
parameters = {
|
| 71 |
-
"num_inference_steps": steps,
|
| 72 |
-
"guidance_scale": cfg_scale,
|
| 73 |
-
"width": width,
|
| 74 |
-
"height": height,
|
| 75 |
-
"seed": seed_value,
|
| 76 |
-
# Best-effort: some backends accept scheduler/sampler names; safe to send.
|
| 77 |
-
"scheduler": sampler,
|
| 78 |
-
}
|
| 79 |
-
if negative_prompt and negative_prompt.strip():
|
| 80 |
-
parameters["negative_prompt"] = negative_prompt
|
| 81 |
-
# Include strength only if meaningful
|
| 82 |
-
if 0 < strength <= 1:
|
| 83 |
-
parameters["strength"] = strength
|
| 84 |
-
|
| 85 |
payload = {
|
| 86 |
-
"inputs":
|
| 87 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
}
|
| 89 |
|
| 90 |
# Send the request to the API and handle the response
|
|
@@ -95,12 +82,12 @@ def query(
|
|
| 95 |
if response.status_code == 503:
|
| 96 |
raise gr.Error(f"{response.status_code} : The model is being loaded")
|
| 97 |
raise gr.Error(f"{response.status_code}")
|
| 98 |
-
|
| 99 |
try:
|
| 100 |
# Convert the response content into an image
|
| 101 |
image_bytes = response.content
|
| 102 |
image = Image.open(io.BytesIO(image_bytes))
|
| 103 |
-
print(f'\033[1mGeneration {key} completed!\033[0m ({
|
| 104 |
return image
|
| 105 |
except Exception as e:
|
| 106 |
print(f"Error when trying to open the image: {e}")
|
|
@@ -118,7 +105,8 @@ css = """
|
|
| 118 |
# Build the Gradio UI with Blocks
|
| 119 |
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
|
| 120 |
# Add a title to the app
|
| 121 |
-
gr.HTML("<center><h1>FLUX.1-Krea-dev</h1></center>")
|
|
|
|
| 122 |
|
| 123 |
# Container for all the UI elements
|
| 124 |
with gr.Column(elem_id="app-container"):
|
|
@@ -149,22 +137,8 @@ with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
|
|
| 149 |
with gr.Row():
|
| 150 |
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
|
| 151 |
|
| 152 |
-
# Bind the button to the
|
| 153 |
-
text_button.click(
|
| 154 |
-
query,
|
| 155 |
-
inputs=[
|
| 156 |
-
text_prompt,
|
| 157 |
-
negative_prompt,
|
| 158 |
-
steps,
|
| 159 |
-
cfg,
|
| 160 |
-
method,
|
| 161 |
-
seed,
|
| 162 |
-
strength,
|
| 163 |
-
width,
|
| 164 |
-
height,
|
| 165 |
-
],
|
| 166 |
-
outputs=image_output,
|
| 167 |
-
)
|
| 168 |
|
| 169 |
-
# Launch the Gradio app
|
| 170 |
app.launch(show_api=True, share=False, mcp_server=True)
|
|
|
|
| 4 |
import random
|
| 5 |
import os
|
| 6 |
import time
|
|
|
|
| 7 |
from PIL import Image
|
| 8 |
import json
|
| 9 |
+
from typing import Optional
|
| 10 |
|
| 11 |
# Project by Nymbo
|
| 12 |
|
|
|
|
| 15 |
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
| 16 |
timeout = 100
|
| 17 |
|
| 18 |
+
# Function to query the API and return the generated image
|
| 19 |
+
def flux_krea_generate(
|
| 20 |
+
prompt: str,
|
| 21 |
+
negative_prompt: str = "(deformed, distorted, disfigured), poorly drawn, bad anatomy, wrong anatomy, extra limb, missing limb, floating limbs, (mutated hands and fingers), disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation, misspellings, typos",
|
| 22 |
steps: int = 35,
|
| 23 |
+
cfg_scale: float = 7.0,
|
| 24 |
sampler: str = "DPM++ 2M Karras",
|
| 25 |
seed: int = -1,
|
| 26 |
strength: float = 0.7,
|
| 27 |
width: int = 1024,
|
| 28 |
+
height: int = 1024
|
| 29 |
) -> Optional[Image.Image]:
|
| 30 |
+
"""
|
| 31 |
+
Generate high-quality images using the FLUX.1-Krea-dev model from Hugging Face.
|
| 32 |
+
|
| 33 |
+
This function creates detailed, ultra-high-quality images based on text prompts using
|
| 34 |
+
the advanced FLUX.1-Krea-dev diffusion model. The generated images feature ultra detail,
|
| 35 |
+
ultra elaboration, and perfect quality.
|
| 36 |
+
|
| 37 |
Args:
|
| 38 |
+
prompt: Text description of the image to generate. Be detailed and descriptive for best results.
|
| 39 |
+
negative_prompt: Text describing what should NOT appear in the image. Helps avoid unwanted elements.
|
| 40 |
+
steps: Number of denoising steps (1-100). Higher values generally produce better quality but take longer.
|
| 41 |
+
cfg_scale: Classifier-free guidance scale (1-20). Higher values follow the prompt more closely.
|
| 42 |
+
sampler: Sampling method to use. Options: "DPM++ 2M Karras", "DPM++ SDE Karras", "Euler", "Euler a", "Heun", "DDIM".
|
| 43 |
+
seed: Random seed for reproducible results. Use -1 for random seed.
|
| 44 |
+
strength: Strength of the generation process (0-1). Higher values give more creative freedom.
|
| 45 |
+
width: Width of generated image in pixels (64-1216, must be multiple of 32).
|
| 46 |
+
height: Height of generated image in pixels (64-1216, must be multiple of 32).
|
| 47 |
+
|
| 48 |
Returns:
|
| 49 |
+
PIL Image object of the generated image, or None if generation failed.
|
|
|
|
|
|
|
|
|
|
| 50 |
"""
|
| 51 |
+
if prompt == "" or prompt is None:
|
| 52 |
return None
|
| 53 |
|
| 54 |
key = random.randint(0, 999)
|
| 55 |
+
|
| 56 |
+
API_TOKEN = random.choice([os.getenv("HF_READ_TOKEN")])
|
| 57 |
+
headers = {"Authorization": f"Bearer {API_TOKEN}"}
|
| 58 |
|
| 59 |
+
# Add some extra flair to the prompt
|
| 60 |
+
enhanced_prompt = f"{prompt} | ultra detail, ultra elaboration, ultra quality, perfect."
|
| 61 |
+
print(f'\033[1mGeneration {key}:\033[0m {enhanced_prompt}')
|
| 62 |
+
|
| 63 |
+
# Prepare the payload for the API call, including width and height
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
payload = {
|
| 65 |
+
"inputs": enhanced_prompt,
|
| 66 |
+
"is_negative": False,
|
| 67 |
+
"steps": steps,
|
| 68 |
+
"cfg_scale": cfg_scale,
|
| 69 |
+
"seed": seed if seed != -1 else random.randint(1, 1000000000),
|
| 70 |
+
"strength": strength,
|
| 71 |
+
"parameters": {
|
| 72 |
+
"width": width, # Pass the width to the API
|
| 73 |
+
"height": height # Pass the height to the API
|
| 74 |
+
}
|
| 75 |
}
|
| 76 |
|
| 77 |
# Send the request to the API and handle the response
|
|
|
|
| 82 |
if response.status_code == 503:
|
| 83 |
raise gr.Error(f"{response.status_code} : The model is being loaded")
|
| 84 |
raise gr.Error(f"{response.status_code}")
|
| 85 |
+
|
| 86 |
try:
|
| 87 |
# Convert the response content into an image
|
| 88 |
image_bytes = response.content
|
| 89 |
image = Image.open(io.BytesIO(image_bytes))
|
| 90 |
+
print(f'\033[1mGeneration {key} completed!\033[0m ({enhanced_prompt})')
|
| 91 |
return image
|
| 92 |
except Exception as e:
|
| 93 |
print(f"Error when trying to open the image: {e}")
|
|
|
|
| 105 |
# Build the Gradio UI with Blocks
|
| 106 |
with gr.Blocks(theme='Nymbo/Nymbo_Theme', css=css) as app:
|
| 107 |
# Add a title to the app
|
| 108 |
+
gr.HTML("<center><h1>FLUX.1-Krea-dev MCP Server</h1></center>")
|
| 109 |
+
gr.HTML("<center><p>High-quality image generation via Model Context Protocol</p></center>")
|
| 110 |
|
| 111 |
# Container for all the UI elements
|
| 112 |
with gr.Column(elem_id="app-container"):
|
|
|
|
| 137 |
with gr.Row():
|
| 138 |
image_output = gr.Image(type="pil", label="Image Output", elem_id="gallery")
|
| 139 |
|
| 140 |
+
# Bind the button to the flux_krea_generate function with the added width and height inputs
|
| 141 |
+
text_button.click(flux_krea_generate, inputs=[text_prompt, negative_prompt, steps, cfg, method, seed, strength, width, height], outputs=image_output)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
|
| 143 |
+
# Launch the Gradio app with MCP server enabled
|
| 144 |
app.launch(show_api=True, share=False, mcp_server=True)
|