Spaces:
Build error
Build error
Update scripts/main.py
Browse files- scripts/main.py +269 -269
scripts/main.py
CHANGED
@@ -1,269 +1,269 @@
|
|
1 |
-
|
2 |
-
import pdb
|
3 |
-
|
4 |
-
import gradio as gr
|
5 |
-
import logfire
|
6 |
-
from custom_retriever import CustomRetriever
|
7 |
-
from llama_index.agent.openai import OpenAIAgent
|
8 |
-
from llama_index.core.llms import MessageRole
|
9 |
-
from llama_index.core.memory import ChatSummaryMemoryBuffer
|
10 |
-
from llama_index.core.tools import RetrieverTool, ToolMetadata
|
11 |
-
from llama_index.core.vector_stores import (
|
12 |
-
FilterCondition,
|
13 |
-
FilterOperator,
|
14 |
-
MetadataFilter,
|
15 |
-
MetadataFilters,
|
16 |
-
)
|
17 |
-
from llama_index.llms.openai import OpenAI
|
18 |
-
from prompts import system_message_openai_agent
|
19 |
-
from setup import (
|
20 |
-
AVAILABLE_SOURCES,
|
21 |
-
AVAILABLE_SOURCES_UI,
|
22 |
-
CONCURRENCY_COUNT,
|
23 |
-
custom_retriever_all_sources,
|
24 |
-
)
|
25 |
-
|
26 |
-
|
27 |
-
def update_query_engine_tools(selected_sources) -> list[RetrieverTool]:
|
28 |
-
tools = []
|
29 |
-
source_mapping: dict[str, tuple[CustomRetriever, str, str]] = {
|
30 |
-
"All Sources": (
|
31 |
-
custom_retriever_all_sources,
|
32 |
-
"all_sources_info",
|
33 |
-
"""Useful tool that contains general information about the field of AI.""",
|
34 |
-
),
|
35 |
-
}
|
36 |
-
|
37 |
-
for source in selected_sources:
|
38 |
-
if source in source_mapping:
|
39 |
-
custom_retriever, name, description = source_mapping[source]
|
40 |
-
tools.append(
|
41 |
-
RetrieverTool(
|
42 |
-
retriever=custom_retriever,
|
43 |
-
metadata=ToolMetadata(
|
44 |
-
name=name,
|
45 |
-
description=description,
|
46 |
-
),
|
47 |
-
)
|
48 |
-
)
|
49 |
-
|
50 |
-
return tools
|
51 |
-
|
52 |
-
|
53 |
-
def generate_completion(
|
54 |
-
query,
|
55 |
-
history,
|
56 |
-
sources,
|
57 |
-
model,
|
58 |
-
memory,
|
59 |
-
):
|
60 |
-
llm = OpenAI(temperature=1, model=model, max_tokens=None)
|
61 |
-
client = llm._get_client()
|
62 |
-
logfire.instrument_openai(client)
|
63 |
-
|
64 |
-
with logfire.span(f"Running query: {query}"):
|
65 |
-
logfire.info(f"User chosen sources: {sources}")
|
66 |
-
|
67 |
-
memory_chat_list = memory.get()
|
68 |
-
|
69 |
-
if len(memory_chat_list) != 0:
|
70 |
-
user_index_memory = [
|
71 |
-
i
|
72 |
-
for i, msg in enumerate(memory_chat_list)
|
73 |
-
if msg.role == MessageRole.USER
|
74 |
-
]
|
75 |
-
|
76 |
-
user_index_history = [
|
77 |
-
i for i, msg in enumerate(history) if msg["role"] == "user"
|
78 |
-
]
|
79 |
-
|
80 |
-
if len(user_index_memory) > len(user_index_history):
|
81 |
-
logfire.warn(f"There are more user messages in memory than in history")
|
82 |
-
user_index_to_remove = user_index_memory[len(user_index_history)]
|
83 |
-
memory_chat_list = memory_chat_list[:user_index_to_remove]
|
84 |
-
memory.set(memory_chat_list)
|
85 |
-
|
86 |
-
logfire.info(f"chat_history: {len(memory.get())} {memory.get()}")
|
87 |
-
logfire.info(f"gradio_history: {len(history)} {history}")
|
88 |
-
|
89 |
-
query_engine_tools: list[RetrieverTool] = update_query_engine_tools(
|
90 |
-
["All Sources"]
|
91 |
-
)
|
92 |
-
|
93 |
-
filter_list = []
|
94 |
-
source_mapping = {
|
95 |
-
"Transformers Docs": "transformers",
|
96 |
-
"PEFT Docs": "peft",
|
97 |
-
"TRL Docs": "trl",
|
98 |
-
"LlamaIndex Docs": "llama_index",
|
99 |
-
"LangChain Docs": "langchain",
|
100 |
-
"OpenAI Cookbooks": "openai_cookbooks",
|
101 |
-
"Towards AI Blog": "tai_blog",
|
102 |
-
"8 Hour Primer": "8-hour_primer",
|
103 |
-
"Advanced LLM Developer": "llm_developer",
|
104 |
-
"Python Primer": "python_primer",
|
105 |
-
}
|
106 |
-
|
107 |
-
for source in sources:
|
108 |
-
if source in source_mapping:
|
109 |
-
filter_list.append(
|
110 |
-
MetadataFilter(
|
111 |
-
key="source",
|
112 |
-
operator=FilterOperator.EQ,
|
113 |
-
value=source_mapping[source],
|
114 |
-
)
|
115 |
-
)
|
116 |
-
|
117 |
-
filters = MetadataFilters(
|
118 |
-
filters=filter_list,
|
119 |
-
condition=FilterCondition.OR,
|
120 |
-
)
|
121 |
-
logfire.info(f"Filters: {filters}")
|
122 |
-
query_engine_tools[0].retriever._vector_retriever._filters = filters
|
123 |
-
|
124 |
-
# pdb.set_trace()
|
125 |
-
|
126 |
-
agent = OpenAIAgent.from_tools(
|
127 |
-
llm=llm,
|
128 |
-
memory=memory,
|
129 |
-
tools=query_engine_tools,
|
130 |
-
system_prompt=system_message_openai_agent,
|
131 |
-
)
|
132 |
-
|
133 |
-
completion = agent.stream_chat(query)
|
134 |
-
|
135 |
-
answer_str = ""
|
136 |
-
for token in completion.response_gen:
|
137 |
-
answer_str += token
|
138 |
-
yield answer_str
|
139 |
-
|
140 |
-
for answer_str in add_sources(answer_str, completion):
|
141 |
-
yield answer_str
|
142 |
-
|
143 |
-
|
144 |
-
def add_sources(answer_str, completion):
|
145 |
-
if completion is None:
|
146 |
-
yield answer_str
|
147 |
-
|
148 |
-
formatted_sources = format_sources(completion)
|
149 |
-
if formatted_sources == "":
|
150 |
-
yield answer_str
|
151 |
-
|
152 |
-
if formatted_sources != "":
|
153 |
-
answer_str += "\n\n" + formatted_sources
|
154 |
-
|
155 |
-
yield answer_str
|
156 |
-
|
157 |
-
|
158 |
-
def format_sources(completion) -> str:
|
159 |
-
if len(completion.sources) == 0:
|
160 |
-
return ""
|
161 |
-
|
162 |
-
# logfire.info(f"Formatting sources: {completion.sources}")
|
163 |
-
|
164 |
-
display_source_to_ui = {
|
165 |
-
src: ui for src, ui in zip(AVAILABLE_SOURCES, AVAILABLE_SOURCES_UI)
|
166 |
-
}
|
167 |
-
|
168 |
-
documents_answer_template: str = (
|
169 |
-
"π Here are the sources I used to answer your question:\n{documents}"
|
170 |
-
)
|
171 |
-
document_template: str = "[π {source}: {title}]({url}), relevance: {score:2.2f}"
|
172 |
-
all_documents = []
|
173 |
-
for source in completion.sources: # looping over list[ToolOutput]
|
174 |
-
if isinstance(source.raw_output, Exception):
|
175 |
-
logfire.error(f"Error in source output: {source.raw_output}")
|
176 |
-
# pdb.set_trace()
|
177 |
-
continue
|
178 |
-
|
179 |
-
if not isinstance(source.raw_output, list):
|
180 |
-
logfire.warn(f"Unexpected source output type: {type(source.raw_output)}")
|
181 |
-
continue
|
182 |
-
for src in source.raw_output: # looping over list[NodeWithScore]
|
183 |
-
document = document_template.format(
|
184 |
-
title=src.metadata["title"],
|
185 |
-
score=src.score,
|
186 |
-
source=display_source_to_ui.get(
|
187 |
-
src.metadata["source"], src.metadata["source"]
|
188 |
-
),
|
189 |
-
url=src.metadata["url"],
|
190 |
-
)
|
191 |
-
all_documents.append(document)
|
192 |
-
|
193 |
-
if len(all_documents) == 0:
|
194 |
-
return ""
|
195 |
-
else:
|
196 |
-
documents = "\n".join(all_documents)
|
197 |
-
return documents_answer_template.format(documents=documents)
|
198 |
-
|
199 |
-
|
200 |
-
def save_completion(completion, history):
|
201 |
-
pass
|
202 |
-
|
203 |
-
|
204 |
-
def vote(data: gr.LikeData):
|
205 |
-
pass
|
206 |
-
|
207 |
-
|
208 |
-
accordion = gr.Accordion(label="Customize Sources (Click to expand)", open=False)
|
209 |
-
sources = gr.CheckboxGroup(
|
210 |
-
AVAILABLE_SOURCES_UI,
|
211 |
-
label="Sources",
|
212 |
-
value=[
|
213 |
-
"Advanced LLM Developer",
|
214 |
-
"8 Hour Primer",
|
215 |
-
"Python Primer",
|
216 |
-
"Towards AI Blog",
|
217 |
-
"Transformers Docs",
|
218 |
-
"PEFT Docs",
|
219 |
-
"TRL Docs",
|
220 |
-
"LlamaIndex Docs",
|
221 |
-
"LangChain Docs",
|
222 |
-
"OpenAI Cookbooks",
|
223 |
-
],
|
224 |
-
interactive=True,
|
225 |
-
)
|
226 |
-
model = gr.Dropdown(
|
227 |
-
[
|
228 |
-
"gpt-4o-mini",
|
229 |
-
#Kenny added GPT2
|
230 |
-
#"gpt2",
|
231 |
-
],
|
232 |
-
label="Model",
|
233 |
-
value="gpt-4o-mini",
|
234 |
-
interactive=False,
|
235 |
-
)
|
236 |
-
|
237 |
-
with gr.Blocks(
|
238 |
-
title="Towards AI π€",
|
239 |
-
analytics_enabled=True,
|
240 |
-
fill_height=True,
|
241 |
-
) as demo:
|
242 |
-
|
243 |
-
memory = gr.State(
|
244 |
-
lambda: ChatSummaryMemoryBuffer.from_defaults(
|
245 |
-
token_limit=120000,
|
246 |
-
)
|
247 |
-
)
|
248 |
-
chatbot = gr.Chatbot(
|
249 |
-
type="messages",
|
250 |
-
scale=20,
|
251 |
-
placeholder="<strong>Towards AI π€: A Question-Answering Bot for anything AI-related</strong><br>",
|
252 |
-
show_label=False,
|
253 |
-
show_copy_button=True,
|
254 |
-
)
|
255 |
-
chatbot.like(vote, None, None)
|
256 |
-
gr.ChatInterface(
|
257 |
-
fn=generate_completion,
|
258 |
-
type="messages",
|
259 |
-
chatbot=chatbot,
|
260 |
-
additional_inputs=[sources, model, memory],
|
261 |
-
additional_inputs_accordion=accordion,
|
262 |
-
# fill_height=True,
|
263 |
-
# fill_width=True,
|
264 |
-
analytics_enabled=True,
|
265 |
-
)
|
266 |
-
|
267 |
-
if __name__ == "__main__":
|
268 |
-
demo.queue(default_concurrency_limit=CONCURRENCY_COUNT)
|
269 |
-
demo.launch(debug=False, share=False)
|
|
|
1 |
+
|
2 |
+
import pdb
|
3 |
+
|
4 |
+
import gradio as gr
|
5 |
+
import logfire
|
6 |
+
from custom_retriever import CustomRetriever
|
7 |
+
from llama_index.agent.openai import OpenAIAgent
|
8 |
+
from llama_index.core.llms import MessageRole
|
9 |
+
from llama_index.core.memory import ChatSummaryMemoryBuffer
|
10 |
+
from llama_index.core.tools import RetrieverTool, ToolMetadata
|
11 |
+
from llama_index.core.vector_stores import (
|
12 |
+
FilterCondition,
|
13 |
+
FilterOperator,
|
14 |
+
MetadataFilter,
|
15 |
+
MetadataFilters,
|
16 |
+
)
|
17 |
+
from llama_index.llms.openai import OpenAI
|
18 |
+
from prompts import system_message_openai_agent
|
19 |
+
from setup import (
|
20 |
+
AVAILABLE_SOURCES,
|
21 |
+
AVAILABLE_SOURCES_UI,
|
22 |
+
CONCURRENCY_COUNT,
|
23 |
+
custom_retriever_all_sources,
|
24 |
+
)
|
25 |
+
|
26 |
+
|
27 |
+
def update_query_engine_tools(selected_sources) -> list[RetrieverTool]:
|
28 |
+
tools = []
|
29 |
+
source_mapping: dict[str, tuple[CustomRetriever, str, str]] = {
|
30 |
+
"All Sources": (
|
31 |
+
custom_retriever_all_sources,
|
32 |
+
"all_sources_info",
|
33 |
+
"""Useful tool that contains general information about the field of AI.""",
|
34 |
+
),
|
35 |
+
}
|
36 |
+
|
37 |
+
for source in selected_sources:
|
38 |
+
if source in source_mapping:
|
39 |
+
custom_retriever, name, description = source_mapping[source]
|
40 |
+
tools.append(
|
41 |
+
RetrieverTool(
|
42 |
+
retriever=custom_retriever,
|
43 |
+
metadata=ToolMetadata(
|
44 |
+
name=name,
|
45 |
+
description=description,
|
46 |
+
),
|
47 |
+
)
|
48 |
+
)
|
49 |
+
|
50 |
+
return tools
|
51 |
+
|
52 |
+
|
53 |
+
def generate_completion(
|
54 |
+
query,
|
55 |
+
history,
|
56 |
+
sources,
|
57 |
+
model,
|
58 |
+
memory,
|
59 |
+
):
|
60 |
+
llm = OpenAI(temperature=1, model=model, max_tokens=None)
|
61 |
+
client = llm._get_client()
|
62 |
+
logfire.instrument_openai(client)
|
63 |
+
|
64 |
+
with logfire.span(f"Running query: {query}"):
|
65 |
+
logfire.info(f"User chosen sources: {sources}")
|
66 |
+
|
67 |
+
memory_chat_list = memory.get()
|
68 |
+
|
69 |
+
if len(memory_chat_list) != 0:
|
70 |
+
user_index_memory = [
|
71 |
+
i
|
72 |
+
for i, msg in enumerate(memory_chat_list)
|
73 |
+
if msg.role == MessageRole.USER
|
74 |
+
]
|
75 |
+
|
76 |
+
user_index_history = [
|
77 |
+
i for i, msg in enumerate(history) if msg["role"] == "user"
|
78 |
+
]
|
79 |
+
|
80 |
+
if len(user_index_memory) > len(user_index_history):
|
81 |
+
logfire.warn(f"There are more user messages in memory than in history")
|
82 |
+
user_index_to_remove = user_index_memory[len(user_index_history)]
|
83 |
+
memory_chat_list = memory_chat_list[:user_index_to_remove]
|
84 |
+
memory.set(memory_chat_list)
|
85 |
+
|
86 |
+
logfire.info(f"chat_history: {len(memory.get())} {memory.get()}")
|
87 |
+
logfire.info(f"gradio_history: {len(history)} {history}")
|
88 |
+
|
89 |
+
query_engine_tools: list[RetrieverTool] = update_query_engine_tools(
|
90 |
+
["All Sources"]
|
91 |
+
)
|
92 |
+
|
93 |
+
filter_list = []
|
94 |
+
source_mapping = {
|
95 |
+
"Transformers Docs": "transformers",
|
96 |
+
"PEFT Docs": "peft",
|
97 |
+
"TRL Docs": "trl",
|
98 |
+
"LlamaIndex Docs": "llama_index",
|
99 |
+
"LangChain Docs": "langchain",
|
100 |
+
"OpenAI Cookbooks": "openai_cookbooks",
|
101 |
+
"Towards AI Blog": "tai_blog",
|
102 |
+
"8 Hour Primer": "8-hour_primer",
|
103 |
+
"Advanced LLM Developer": "llm_developer",
|
104 |
+
"Python Primer": "python_primer",
|
105 |
+
}
|
106 |
+
|
107 |
+
for source in sources:
|
108 |
+
if source in source_mapping:
|
109 |
+
filter_list.append(
|
110 |
+
MetadataFilter(
|
111 |
+
key="source",
|
112 |
+
operator=FilterOperator.EQ,
|
113 |
+
value=source_mapping[source],
|
114 |
+
)
|
115 |
+
)
|
116 |
+
|
117 |
+
filters = MetadataFilters(
|
118 |
+
filters=filter_list,
|
119 |
+
condition=FilterCondition.OR,
|
120 |
+
)
|
121 |
+
logfire.info(f"Filters: {filters}")
|
122 |
+
query_engine_tools[0].retriever._vector_retriever._filters = filters
|
123 |
+
|
124 |
+
# pdb.set_trace()
|
125 |
+
|
126 |
+
agent = OpenAIAgent.from_tools(
|
127 |
+
llm=llm,
|
128 |
+
memory=memory,
|
129 |
+
tools=query_engine_tools,
|
130 |
+
system_prompt=system_message_openai_agent,
|
131 |
+
)
|
132 |
+
|
133 |
+
completion = agent.stream_chat(query)
|
134 |
+
|
135 |
+
answer_str = ""
|
136 |
+
for token in completion.response_gen:
|
137 |
+
answer_str += token
|
138 |
+
yield answer_str
|
139 |
+
|
140 |
+
for answer_str in add_sources(answer_str, completion):
|
141 |
+
yield answer_str
|
142 |
+
|
143 |
+
|
144 |
+
def add_sources(answer_str, completion):
|
145 |
+
if completion is None:
|
146 |
+
yield answer_str
|
147 |
+
|
148 |
+
formatted_sources = format_sources(completion)
|
149 |
+
if formatted_sources == "":
|
150 |
+
yield answer_str
|
151 |
+
|
152 |
+
if formatted_sources != "":
|
153 |
+
answer_str += "\n\n" + formatted_sources
|
154 |
+
|
155 |
+
yield answer_str
|
156 |
+
|
157 |
+
|
158 |
+
def format_sources(completion) -> str:
|
159 |
+
if len(completion.sources) == 0:
|
160 |
+
return ""
|
161 |
+
|
162 |
+
# logfire.info(f"Formatting sources: {completion.sources}")
|
163 |
+
|
164 |
+
display_source_to_ui = {
|
165 |
+
src: ui for src, ui in zip(AVAILABLE_SOURCES, AVAILABLE_SOURCES_UI)
|
166 |
+
}
|
167 |
+
|
168 |
+
documents_answer_template: str = (
|
169 |
+
"π Here are the sources I used to answer your question:\n{documents}"
|
170 |
+
)
|
171 |
+
document_template: str = "[π {source}: {title}]({url}), relevance: {score:2.2f}"
|
172 |
+
all_documents = []
|
173 |
+
for source in completion.sources: # looping over list[ToolOutput]
|
174 |
+
if isinstance(source.raw_output, Exception):
|
175 |
+
logfire.error(f"Error in source output: {source.raw_output}")
|
176 |
+
# pdb.set_trace()
|
177 |
+
continue
|
178 |
+
|
179 |
+
if not isinstance(source.raw_output, list):
|
180 |
+
logfire.warn(f"Unexpected source output type: {type(source.raw_output)}")
|
181 |
+
continue
|
182 |
+
for src in source.raw_output: # looping over list[NodeWithScore]
|
183 |
+
document = document_template.format(
|
184 |
+
title=src.metadata["title"],
|
185 |
+
score=src.score,
|
186 |
+
source=display_source_to_ui.get(
|
187 |
+
src.metadata["source"], src.metadata["source"]
|
188 |
+
),
|
189 |
+
url=src.metadata["url"],
|
190 |
+
)
|
191 |
+
all_documents.append(document)
|
192 |
+
|
193 |
+
if len(all_documents) == 0:
|
194 |
+
return ""
|
195 |
+
else:
|
196 |
+
documents = "\n".join(all_documents)
|
197 |
+
return documents_answer_template.format(documents=documents)
|
198 |
+
|
199 |
+
|
200 |
+
def save_completion(completion, history):
|
201 |
+
pass
|
202 |
+
|
203 |
+
|
204 |
+
def vote(data: gr.LikeData):
|
205 |
+
pass
|
206 |
+
|
207 |
+
|
208 |
+
accordion = gr.Accordion(label="Customize Sources (Click to expand)", open=False)
|
209 |
+
sources = gr.CheckboxGroup(
|
210 |
+
AVAILABLE_SOURCES_UI,
|
211 |
+
label="Sources",
|
212 |
+
value=[
|
213 |
+
"Advanced LLM Developer",
|
214 |
+
"8 Hour Primer",
|
215 |
+
"Python Primer",
|
216 |
+
"Towards AI Blog",
|
217 |
+
"Transformers Docs",
|
218 |
+
"PEFT Docs",
|
219 |
+
"TRL Docs",
|
220 |
+
"LlamaIndex Docs",
|
221 |
+
"LangChain Docs",
|
222 |
+
"OpenAI Cookbooks",
|
223 |
+
],
|
224 |
+
interactive=True,
|
225 |
+
)
|
226 |
+
model = gr.Dropdown(
|
227 |
+
[
|
228 |
+
"gpt-4o-mini",
|
229 |
+
#Kenny added GPT2
|
230 |
+
#"gpt2",
|
231 |
+
],
|
232 |
+
label="Model",
|
233 |
+
value="gpt-4o-mini",
|
234 |
+
interactive=False,
|
235 |
+
)
|
236 |
+
|
237 |
+
with gr.Blocks(
|
238 |
+
title="Towards AI π€",
|
239 |
+
analytics_enabled=True,
|
240 |
+
fill_height=True,
|
241 |
+
) as demo:
|
242 |
+
|
243 |
+
memory = gr.State(
|
244 |
+
lambda: ChatSummaryMemoryBuffer.from_defaults(
|
245 |
+
token_limit=120000,
|
246 |
+
)
|
247 |
+
)
|
248 |
+
chatbot = gr.Chatbot(
|
249 |
+
type="messages",
|
250 |
+
scale=20,
|
251 |
+
placeholder="<strong>Towards AI π€: A Question-Answering Bot for anything AI-related</strong><br>",
|
252 |
+
show_label=False,
|
253 |
+
show_copy_button=True,
|
254 |
+
)
|
255 |
+
chatbot.like(vote, None, None)
|
256 |
+
gr.ChatInterface(
|
257 |
+
fn=generate_completion,
|
258 |
+
type="messages",
|
259 |
+
chatbot=chatbot,
|
260 |
+
additional_inputs=[sources, model, memory],
|
261 |
+
additional_inputs_accordion=accordion,
|
262 |
+
# fill_height=True,
|
263 |
+
# fill_width=True,
|
264 |
+
analytics_enabled=True,
|
265 |
+
)
|
266 |
+
|
267 |
+
if __name__ == "__main__":
|
268 |
+
demo.queue(default_concurrency_limit=CONCURRENCY_COUNT)
|
269 |
+
demo.launch(debug=False, share=False)
|