Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,52 +1,58 @@
|
|
|
|
1 |
import os
|
|
|
2 |
import torch
|
3 |
import torchaudio
|
4 |
-
import
|
5 |
import nemo.collections.asr as nemo_asr
|
6 |
|
7 |
-
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
|
|
|
|
|
|
|
|
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
"Assamese", "Bengali", "Bodo", "Dogri", "Gujarati", "Hindi",
|
17 |
-
"Kannada", "Kashmiri", "Konkani", "Maithili", "Malayalam",
|
18 |
-
"Manipuri", "Marathi", "Nepali", "Odia", "Punjabi", "Sanskrit",
|
19 |
-
"Santali", "Sindhi", "Tamil", "Telugu", "Urdu"
|
20 |
-
]
|
21 |
|
22 |
-
|
23 |
-
|
24 |
-
asr_ctc.change_vocabulary(language=source_lang)
|
25 |
-
return asr_ctc.transcribe(paths2audio_files=[audio_path])[0]
|
26 |
|
27 |
-
|
28 |
-
def run_asr_rnnt(audio_path, source_lang):
|
29 |
-
asr_rnnt.change_vocabulary(language=source_lang)
|
30 |
-
return asr_rnnt.transcribe(paths2audio_files=[audio_path])[0]
|
31 |
|
32 |
-
# Gradio UI
|
33 |
with gr.Blocks() as demo:
|
34 |
-
gr.Markdown(
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
demo.launch()
|
|
|
1 |
+
from __future__ import annotations
|
2 |
import os
|
3 |
+
import gradio as gr
|
4 |
import torch
|
5 |
import torchaudio
|
6 |
+
import spaces
|
7 |
import nemo.collections.asr as nemo_asr
|
8 |
|
9 |
+
LANGUAGE_NAME_TO_CODE = {
|
10 |
+
"Assamese": "as", "Bengali": "bn", "Bodo": "br", "Dogri": "doi",
|
11 |
+
"Gujarati": "gu", "Hindi": "hi", "Kannada": "kn", "Kashmiri": "ks",
|
12 |
+
"Konkani": "kok", "Maithili": "mai", "Malayalam": "ml", "Manipuri": "mni",
|
13 |
+
"Marathi": "mr", "Nepali": "ne", "Odia": "or", "Punjabi": "pa",
|
14 |
+
"Sanskrit": "sa", "Santali": "sat", "Sindhi": "sd", "Tamil": "ta",
|
15 |
+
"Telugu": "te", "Urdu": "ur"
|
16 |
+
}
|
17 |
+
|
18 |
+
DESCRIPTION = """IndicConformer: Dual-Decoder ASR for Indian Languages"""
|
19 |
+
|
20 |
+
device = "cuda:0" if torch.cuda.is_available() else "mps" if torch.backends.mps.is_available() else "cpu"
|
21 |
+
model = nemo_asr.models.EncDecCTCModel.from_pretrained("ai4bharat/IndicConformer").to(device)
|
22 |
+
model.eval()
|
23 |
|
24 |
+
@spaces.GPU
|
25 |
+
def transcribe_ctc_and_rnnt(audio_path, language_name):
|
26 |
+
lang_id = LANGUAGE_NAME_TO_CODE[language_name]
|
27 |
+
waveform, sample_rate = torchaudio.load(audio_path)
|
28 |
+
waveform = waveform.mean(dim=0, keepdim=True) if waveform.shape[0] > 1 else waveform
|
29 |
+
waveform = torchaudio.functional.resample(waveform, sample_rate, 16000)
|
30 |
+
waveform_np = waveform.squeeze().numpy()
|
31 |
|
32 |
+
model.cur_decoder = "ctc"
|
33 |
+
ctc = model.transcribe([waveform_np], batch_size=1, language_id=lang_id)[0][0]
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
+
model.cur_decoder = "rnnt"
|
36 |
+
rnnt = model.transcribe([waveform_np], batch_size=1, language_id=lang_id)[0][0]
|
|
|
|
|
37 |
|
38 |
+
return ctc, rnnt
|
|
|
|
|
|
|
39 |
|
|
|
40 |
with gr.Blocks() as demo:
|
41 |
+
gr.Markdown(DESCRIPTION)
|
42 |
+
with gr.Row():
|
43 |
+
with gr.Column():
|
44 |
+
audio = gr.Audio(label="Upload or record audio", type="filepath")
|
45 |
+
lang = gr.Dropdown(
|
46 |
+
label="Select language",
|
47 |
+
choices=LANGUAGE_NAME_TO_CODE.keys(),
|
48 |
+
value="Hindi"
|
49 |
+
)
|
50 |
+
transcribe_btn = gr.Button("Transcribe (CTC + RNNT)")
|
51 |
+
with gr.Column():
|
52 |
+
ctc_output = gr.Textbox(label="CTC Transcription")
|
53 |
+
rnnt_output = gr.Textbox(label="RNNT Transcription")
|
54 |
+
|
55 |
+
transcribe_btn.click(fn=transcribe_ctc_and_rnnt, inputs=[audio, lang], outputs=[ctc_output, rnnt_output])
|
56 |
+
|
57 |
+
if __name__ == "__main__":
|
58 |
+
demo.queue().launch()
|
|