Spaces:
Sleeping
Sleeping
import os | |
import openai | |
import whisper | |
import tempfile | |
import gradio as gr | |
from pydub import AudioSegment | |
import fitz # PyMuPDF for handling PDFs | |
import docx # For handling .docx files | |
import pandas as pd # For handling .xlsx and .csv files | |
# from google.colab import userdata # Import userdata from google.colab | |
import requests | |
from bs4 import BeautifulSoup | |
# Configure your OpenAI API key using Google Colab userdata | |
# openai.api_key = userdata.get('OPENAI_API_KEY') | |
# Load environment variables from the Hugging Face environment | |
openai.api_key = os.getenv("OPENAI_API_KEY") | |
# Load the highest quality Whisper model once | |
model = whisper.load_model("large") | |
def preprocess_audio(audio_file): | |
"""Preprocess the audio file to improve quality.""" | |
try: | |
audio = AudioSegment.from_file(audio_file) | |
audio = audio.apply_gain(-audio.dBFS + (-20)) | |
with tempfile.NamedTemporaryFile(delete=False, suffix=".mp3") as temp_file: | |
audio.export(temp_file.name, format="mp3") | |
return temp_file.name | |
except Exception as e: | |
return f"Error preprocessing the audio file: {str(e)}" | |
def transcribe_audio(audio_file): | |
"""Transcribe an audio file.""" | |
try: | |
file_path = preprocess_audio(audio_file) if isinstance(audio_file, str) else preprocess_audio(tempfile.NamedTemporaryFile(delete=False, suffix=".mp3", mode='w+b').name) | |
result = model.transcribe(file_path) | |
return result.get("text", "Error in transcription") | |
except Exception as e: | |
return f"Error processing the audio file: {str(e)}" | |
def read_document(document_path): | |
"""Read the content of a PDF, DOCX, XLSX or CSV document.""" | |
try: | |
if document_path.endswith(".pdf"): | |
doc = fitz.open(document_path) | |
return "\n".join([page.get_text() for page in doc]) | |
elif document_path.endswith(".docx"): | |
doc = docx.Document(document_path) | |
return "\n".join([paragraph.text for paragraph in doc.paragraphs]) | |
elif document_path.endswith(".xlsx"): | |
return pd.read_excel(document_path).to_string() | |
elif document_path.endswith(".csv"): | |
return pd.read_csv(document_path).to_string() | |
else: | |
return "Unsupported file type. Please upload a PDF, DOCX, XLSX or CSV document." | |
except Exception as e: | |
return f"Error reading the document: {str(e)}" | |
def read_url(url): | |
"""Read the content of a URL.""" | |
try: | |
response = requests.get(url) | |
response.raise_for_status() | |
soup = BeautifulSoup(response.content, 'html.parser') | |
return soup.get_text() | |
except Exception as e: | |
return f"Error reading the URL: {str(e)}" | |
def generate_news(instructions, facts, size, tone, urls, *args): | |
"""Generate a news article based on instructions, facts, URLs, documents, and transcriptions.""" | |
knowledge_base = {"instructions": instructions, "facts": facts, "document_content": [], "audio_data": [], "url_content": []} | |
num_audios = 5 * 3 # 5 audios * 3 fields (audio, name, position) | |
audios = args[:num_audios] | |
documents = args[num_audios:] | |
for url in urls.split(): | |
if url: | |
knowledge_base["url_content"].append(read_url(url)) | |
for document in documents: | |
if document is not None: | |
knowledge_base["document_content"].append(read_document(document.name)) | |
for i in range(0, len(audios), 3): | |
audio_file, name, position = audios[i:i+3] | |
if audio_file is not None: | |
knowledge_base["audio_data"].append({"audio": audio_file, "name": name, "position": position}) | |
transcriptions_text, raw_transcriptions, total_direct_quotes = "", "", 0 | |
for idx, data in enumerate(knowledge_base["audio_data"]): | |
if data["audio"] is not None: | |
transcription = transcribe_audio(data["audio"]) | |
transcription_text = f'"{transcription}" - {data["name"]}, {data["position"]}' | |
raw_transcription = f'[Audio {idx + 1}]: "{transcription}" - {data["name"]}, {data["position"]}' | |
if total_direct_quotes < len(knowledge_base["audio_data"]) * 0.8: | |
transcriptions_text += transcription_text + "\n" | |
total_direct_quotes += 1 | |
else: | |
transcriptions_text += f'{data["name"]} mentioned that {transcription}' + "\n" | |
raw_transcriptions += raw_transcription + "\n\n" | |
document_content = "\n\n".join(knowledge_base["document_content"]) | |
url_content = "\n\n".join(knowledge_base["url_content"]) | |
internal_prompt = """ | |
Instructions for the model: | |
- Follow the principles of news writing: always try to answer the 5 Ws of a news story in the first paragraph (Who?, What?, When?, Where?, Why?). | |
- Ensure that at least 80% of the quotes are direct and in quotation marks. | |
- The remaining 20% can be indirect quotes. | |
- Do not invent new information. | |
- Be rigorous with the provided facts. | |
- When processing uploaded documents, extract and highlight important quotes and verbatim testimonies from sources. | |
- When processing uploaded documents, extract and highlight key figures. | |
""" | |
prompt = f""" | |
{internal_prompt} | |
Write a news article with the following information, including a title, a 15-word hook (additional information that complements the title), and the body content with a size of {size} words. The tone should be {tone}. | |
Instructions: {knowledge_base["instructions"]} | |
Facts: {knowledge_base["facts"]} | |
Additional content from documents: {document_content} | |
Additional content from URLs: {url_content} | |
Use the following transcriptions as direct and indirect quotes (without changing or inventing content): | |
{transcriptions_text} | |
""" | |
try: | |
response = openai.ChatCompletion.create( | |
model="gpt-3.5-turbo", | |
messages=[{"role": "user", "content": prompt}], | |
temperature=0.1 | |
) | |
news_article = response['choices'][0]['message']['content'] | |
return news_article, raw_transcriptions | |
except Exception as e: | |
return f"Error generating the news article: {str(e)}", "" | |
with gr.Blocks() as demo: | |
gr.Markdown("## All-in-One News Generator") | |
with gr.Row(): | |
with gr.Column(scale=2): | |
instructions = gr.Textbox(label="Instructions for the news article", lines=2) | |
facts = gr.Textbox(label="Describe the facts of the news", lines=4) | |
size = gr.Number(label="Size of the news body (in words)", value=100) | |
tone = gr.Dropdown(label="Tone of the news", choices=["serious", "neutral", "lighthearted"], value="neutral") | |
urls = gr.Textbox(label="URLs (separated by space)", lines=2) | |
with gr.Column(scale=3): | |
inputs_list = [instructions, facts, size, tone, urls] | |
with gr.Tabs(): | |
for i in range(1, 6): | |
with gr.TabItem(f"Audio {i}"): | |
audio = gr.Audio(type="filepath", label=f"Audio {i}") | |
name = gr.Textbox(label="Name", scale=1) | |
position = gr.Textbox(label="Position", scale=1) | |
inputs_list.extend([audio, name, position]) | |
for i in range(1, 6): | |
with gr.TabItem(f"Document {i}"): | |
document = gr.File(label=f"Document {i}", type="filepath", file_count="single") | |
inputs_list.append(document) | |
gr.Markdown("---") # Visual separator | |
with gr.Row(): | |
transcriptions_output = gr.Textbox(label="Transcriptions", lines=10) | |
gr.Markdown("---") # Visual separator | |
with gr.Row(): | |
generate = gr.Button("Generate draft") | |
with gr.Row(): | |
news_output = gr.Textbox(label="Generated draft", lines=20) | |
generate.click(fn=generate_news, inputs=inputs_list, outputs=[news_output, transcriptions_output]) | |
demo.launch(share=True) |