Spaces:
Sleeping
Sleeping
File size: 6,920 Bytes
f4e648b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import torch
import torch.nn as nn
from torch.nn import functional as F
import tqdm
class Head(nn.Module):
"""One head of self-attention."""
def __init__(self, n_embd, head_size, block_size, dropout):
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False)
self.query = nn.Linear(n_embd, head_size, bias=False)
self.value = nn.Linear(n_embd, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
def forward(self, x):
B, T, C = x.shape
k = self.key(x)
q = self.query(x)
wei = q @ k.transpose(-2, -1) * k.shape[-1] ** -0.5
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
v = self.value(x)
out = wei @ v
return out
class MultiHeadAttention(nn.Module):
"""Multiple heads of self-attention in parallel."""
def __init__(self, n_embd, n_head, block_size, dropout):
super().__init__()
assert n_embd % n_head == 0, f"n_embd ({n_embd}) must be divisible by num_heads ({n_head})"
self.n_embd = n_embd
self.n_head = n_head
self.head_size = n_embd // n_head
self.heads = nn.ModuleList([Head(n_embd, self.head_size, block_size, dropout) for _ in range(n_head)])
self.proj = nn.Linear(n_embd, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
out = torch.cat([h(x) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class FeedForward(nn.Module):
"""A simple linear layer followed by a non-linearity."""
def __init__(self, n_embd, dropout):
super().__init__()
self.net = nn.Sequential(
nn.Linear(n_embd, 4 * n_embd),
nn.ReLU(),
nn.Linear(4 * n_embd, n_embd),
nn.Dropout(dropout),
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
"""Transformer block: communication followed by computation."""
def __init__(self, n_embd, n_head, block_size, dropout):
super().__init__()
self.sa = MultiHeadAttention(n_embd, n_head, block_size, dropout)
self.ffwd = FeedForward(n_embd, dropout)
self.ln1 = nn.LayerNorm(n_embd)
self.ln2 = nn.LayerNorm(n_embd)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class RoPE(nn.Module):
"""Rotary Positional Encoding (RoPE) layer."""
def __init__(self, embd_dim, max_freq=10):
super().__init__()
self.embd_dim = embd_dim
self.max_freq = max_freq
self.freqs = 2 ** torch.linspace(0, max_freq - 1, embd_dim // 2) * torch.pi
self.inv_freqs = 1. / self.freqs
def forward(self, x):
x = x + torch.sin(x @ self.freqs) * self.inv_freqs
x = x + torch.cos(x @ self.freqs) * self.inv_freqs
return x
class RMSNorm(nn.Module):
"""Root Mean Square Layer Normalization (RMSNorm)."""
def __init__(self, embd_dim, epsilon=1e-8):
super().__init__()
self.embd_dim = embd_dim
self.epsilon = epsilon
self.gamma = nn.Parameter(torch.ones(embd_dim))
self.beta = nn.Parameter(torch.zeros(embd_dim))
def forward(self, x: torch.Tensor):
mean = x.mean(-1, keepdim=True)
variance = x.var(-1, keepdim=True)
x = x - mean
x = x / torch.sqrt(variance + self.epsilon)
x = x * self.gamma + self.beta
return x
class LlamaFFN(nn.Module):
"""Feed-forward network of the LLAMA model with SwiGLU activation."""
def __init__(self, n_embd, dropout):
super().__init__()
self.linear1 = nn.Linear(n_embd, 4 * n_embd)
self.linear2 = nn.Linear(4 * n_embd, n_embd)
self.dropout = nn.Dropout(dropout)
def swiglu(self, x):
"""Applies SwiGLU activation."""
x1, x2 = torch.chunk(x, 2, dim=-1)
return x1 * F.silu(x2)
def forward(self, x):
x = self.linear1(x)
x = self.swiglu(x)
x = self.dropout(x)
x = self.linear2(x)
return x
class AttentionHeadWithKVCacheAndRoPE(nn.Module):
"""One head of self-attention with key and value cache and RoPE."""
def __init__(self, n_embd, head_size, block_size, dropout):
super().__init__()
self.key = nn.Linear(n_embd, head_size, bias=False)
self.query = nn.Linear(n_embd, head_size, bias=False)
self.value = nn.Linear(n_embd, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
self.dropout = nn.Dropout(dropout)
self.pe = RoPE(head_size)
self.ln = RMSNorm(n_embd)
def forward(self, x, kv_cache):
B, T, C = x.shape
k = self.key(x)
q = self.query(x)
v = self.value(x)
if kv_cache is not None:
k = torch.cat([kv_cache['k'], k], dim=1)
v = torch.cat([kv_cache['v'], v], dim=1)
wei = q @ k.transpose(-2, -1) * k.shape[-1] ** -0.5
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
out = wei @ v
if kv_cache is None:
kv_cache = {'k': k, 'q': q, 'v': v}
else:
kv_cache['k'] = k
kv_cache['q'] = q
kv_cache['v'] = v
return self.pe(out) + x
class MultiHeadAttentionWithKVCacheAndRoPE(nn.Module):
"""Multiple heads of self-attention in parallel."""
def __init__(self, n_embd, n_head, block_size, dropout):
super().__init__()
assert n_embd % n_head == 0, f"n_embd ({n_embd}) must be divisible by num_heads ({n_head})"
self.n_embd = n_embd
self.n_head = n_head
self.head_size = n_embd // n_head
self.heads = nn.ModuleList([AttentionHeadWithKVCacheAndRoPE(n_embd, self.head_size, block_size, dropout) for _ in range(n_head)])
self.proj = nn.Linear(n_embd, n_embd)
self.dropout = nn.Dropout(dropout)
def forward(self, x, kv_cache):
out = torch.cat([h(x, kv_cache) for h in self.heads], dim=-1)
out = self.dropout(self.proj(out))
return out
class LlamaBlock(nn.Module):
"""LLAMA block: communication followed by computation."""
def __init__(self, n_embd, n_head, block_size, dropout):
super().__init__()
self.ln1 = RMSNorm(n_embd)
self.sa = MultiHeadAttentionWithKVCacheAndRoPE(n_embd, n_head, block_size, dropout)
self.ln2 = RMSNorm(n_embd)
self.ffwd = LlamaFFN(n_embd, dropout)
def forward(self, x, kv_cache):
x = x + self.sa(self.ln1(x), kv_cache)
x = x + self.ffwd(self.ln2(x))
return x
|