File size: 6,920 Bytes
f4e648b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
import torch
import torch.nn as nn
from torch.nn import functional as F
import tqdm


class Head(nn.Module):
    """One head of self-attention."""

    def __init__(self, n_embd, head_size, block_size, dropout):
        super().__init__()
        self.key = nn.Linear(n_embd, head_size, bias=False)
        self.query = nn.Linear(n_embd, head_size, bias=False)
        self.value = nn.Linear(n_embd, head_size, bias=False)
        self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        B, T, C = x.shape
        k = self.key(x)
        q = self.query(x)
        wei = q @ k.transpose(-2, -1) * k.shape[-1] ** -0.5
        wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
        wei = F.softmax(wei, dim=-1)
        wei = self.dropout(wei)
        v = self.value(x)
        out = wei @ v
        return out

class MultiHeadAttention(nn.Module):
    """Multiple heads of self-attention in parallel."""

    def __init__(self, n_embd, n_head, block_size, dropout):
        super().__init__()
        assert n_embd % n_head == 0, f"n_embd ({n_embd}) must be divisible by num_heads ({n_head})"

        self.n_embd = n_embd
        self.n_head = n_head
        self.head_size = n_embd // n_head

        self.heads = nn.ModuleList([Head(n_embd, self.head_size, block_size, dropout) for _ in range(n_head)])
        self.proj = nn.Linear(n_embd, n_embd)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x):
        out = torch.cat([h(x) for h in self.heads], dim=-1)
        out = self.dropout(self.proj(out))
        return out

class FeedForward(nn.Module):
    """A simple linear layer followed by a non-linearity."""

    def __init__(self, n_embd, dropout):
        super().__init__()
        self.net = nn.Sequential(
            nn.Linear(n_embd, 4 * n_embd),
            nn.ReLU(),
            nn.Linear(4 * n_embd, n_embd),
            nn.Dropout(dropout),
        )

    def forward(self, x):
        return self.net(x)

class Block(nn.Module):
    """Transformer block: communication followed by computation."""

    def __init__(self, n_embd, n_head, block_size, dropout):
        super().__init__()
        self.sa = MultiHeadAttention(n_embd, n_head, block_size, dropout)
        self.ffwd = FeedForward(n_embd, dropout)
        self.ln1 = nn.LayerNorm(n_embd)
        self.ln2 = nn.LayerNorm(n_embd)

    def forward(self, x):
        x = x + self.sa(self.ln1(x))
        x = x + self.ffwd(self.ln2(x))
        return x
    

class RoPE(nn.Module):
    """Rotary Positional Encoding (RoPE) layer."""

    def __init__(self, embd_dim, max_freq=10):
        super().__init__()
        self.embd_dim = embd_dim
        self.max_freq = max_freq
        self.freqs = 2 ** torch.linspace(0, max_freq - 1, embd_dim // 2) * torch.pi
        self.inv_freqs = 1. / self.freqs

    def forward(self, x):
        x = x + torch.sin(x @ self.freqs) * self.inv_freqs
        x = x + torch.cos(x @ self.freqs) * self.inv_freqs
        return x


class RMSNorm(nn.Module):
    """Root Mean Square Layer Normalization (RMSNorm)."""

    def __init__(self, embd_dim, epsilon=1e-8):
        super().__init__()
        self.embd_dim = embd_dim
        self.epsilon = epsilon
        self.gamma = nn.Parameter(torch.ones(embd_dim))
        self.beta = nn.Parameter(torch.zeros(embd_dim))

    def forward(self, x: torch.Tensor):
        mean = x.mean(-1, keepdim=True)
        variance = x.var(-1, keepdim=True)
        x = x - mean
        x = x / torch.sqrt(variance + self.epsilon)
        x = x * self.gamma + self.beta
        return x
    

class LlamaFFN(nn.Module):
    """Feed-forward network of the LLAMA model with SwiGLU activation."""

    def __init__(self, n_embd, dropout):
        super().__init__()
        self.linear1 = nn.Linear(n_embd, 4 * n_embd)
        self.linear2 = nn.Linear(4 * n_embd, n_embd)
        self.dropout = nn.Dropout(dropout)

    def swiglu(self, x):
        """Applies SwiGLU activation."""
        x1, x2 = torch.chunk(x, 2, dim=-1)
        return x1 * F.silu(x2)

    def forward(self, x):
        x = self.linear1(x)
        x = self.swiglu(x)
        x = self.dropout(x)
        x = self.linear2(x)
        return x


class AttentionHeadWithKVCacheAndRoPE(nn.Module):
    """One head of self-attention with key and value cache and RoPE."""

    def __init__(self, n_embd, head_size, block_size, dropout):
        super().__init__()
        self.key = nn.Linear(n_embd, head_size, bias=False)
        self.query = nn.Linear(n_embd, head_size, bias=False)
        self.value = nn.Linear(n_embd, head_size, bias=False)
        self.register_buffer('tril', torch.tril(torch.ones(block_size, block_size)))
        self.dropout = nn.Dropout(dropout)
        self.pe = RoPE(head_size)
        self.ln = RMSNorm(n_embd)

    def forward(self, x, kv_cache):
        B, T, C = x.shape
        k = self.key(x)
        q = self.query(x)
        v = self.value(x)
        if kv_cache is not None:
            k = torch.cat([kv_cache['k'], k], dim=1)
            v = torch.cat([kv_cache['v'], v], dim=1)
        wei = q @ k.transpose(-2, -1) * k.shape[-1] ** -0.5
        wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
        wei = F.softmax(wei, dim=-1)
        wei = self.dropout(wei)
        out = wei @ v
        if kv_cache is None:
            kv_cache = {'k': k, 'q': q, 'v': v}
        else:
            kv_cache['k'] = k
            kv_cache['q'] = q
            kv_cache['v'] = v
        return self.pe(out) + x


class MultiHeadAttentionWithKVCacheAndRoPE(nn.Module):
    """Multiple heads of self-attention in parallel."""

    def __init__(self, n_embd, n_head, block_size, dropout):
        super().__init__()
        assert n_embd % n_head == 0, f"n_embd ({n_embd}) must be divisible by num_heads ({n_head})"

        self.n_embd = n_embd
        self.n_head = n_head
        self.head_size = n_embd // n_head

        self.heads = nn.ModuleList([AttentionHeadWithKVCacheAndRoPE(n_embd, self.head_size, block_size, dropout) for _ in range(n_head)])
        self.proj = nn.Linear(n_embd, n_embd)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, kv_cache):
        out = torch.cat([h(x, kv_cache) for h in self.heads], dim=-1)
        out = self.dropout(self.proj(out))
        return out


class LlamaBlock(nn.Module):
    """LLAMA block: communication followed by computation."""

    def __init__(self, n_embd, n_head, block_size, dropout):
        super().__init__()
        self.ln1 = RMSNorm(n_embd)
        self.sa = MultiHeadAttentionWithKVCacheAndRoPE(n_embd, n_head, block_size, dropout)
        self.ln2 = RMSNorm(n_embd)
        self.ffwd = LlamaFFN(n_embd, dropout)
    
    def forward(self, x, kv_cache):
        x = x + self.sa(self.ln1(x), kv_cache)
        x = x + self.ffwd(self.ln2(x))
        return x