Groq-MOA / moa /agent /moa.py
Liu Hong Yuan Tom
Upload 13 files
1cbf6da verified
raw
history blame
6.43 kB
"""
Langchain agent
"""
from typing import Generator, Dict, Optional, Literal, TypedDict, List, Any
from dotenv import load_dotenv
from langchain_groq import ChatGroq
from langchain.memory import ConversationBufferMemory
from langchain.prompts import ChatPromptTemplate, MessagesPlaceholder
from langchain_core.messages import BaseMessage
from langchain_core.runnables import RunnablePassthrough, RunnableLambda, RunnableSerializable
from langchain_core.output_parsers import StrOutputParser
from .prompts import SYSTEM_PROMPT, REFERENCE_SYSTEM_PROMPT
load_dotenv()
valid_model_names = Literal[
'llama3-70b-8192',
'llama3-8b-8192',
'gemma-7b-it',
'gemma2-9b-it',
'mixtral-8x7b-32768',
'llama-3.1-8b-instant',
'llama-3.1-70b-versatile'
]
class ResponseChunk(TypedDict):
delta: str
response_type: Literal['intermediate', 'output']
metadata: Dict[str, Any]
class MOAgent:
def __init__(
self,
main_agent: RunnableSerializable[Dict, str],
layer_agent: RunnableSerializable[Dict, Dict],
reference_system_prompt: Optional[str] = None,
cycles: Optional[int] = None,
chat_memory: Optional[ConversationBufferMemory] = None
) -> None:
self.reference_system_prompt = reference_system_prompt or REFERENCE_SYSTEM_PROMPT
self.main_agent = main_agent
self.layer_agent = layer_agent
self.cycles = cycles or 1
self.chat_memory = chat_memory or ConversationBufferMemory(
memory_key="messages",
return_messages=True
)
@staticmethod
def concat_response(
inputs: Dict[str, str],
reference_system_prompt: Optional[str] = None
):
reference_system_prompt = reference_system_prompt or REFERENCE_SYSTEM_PROMPT
responses = ""
res_list = []
for i, out in enumerate(inputs.values()):
responses += f"{i}. {out}\n"
res_list.append(out)
formatted_prompt = reference_system_prompt.format(responses=responses)
return {
'formatted_response': formatted_prompt,
'responses': res_list
}
@classmethod
def from_config(
cls,
main_model: Optional[valid_model_names] = 'llama3-70b-8192',
system_prompt: Optional[str] = None,
cycles: int = 1,
layer_agent_config: Optional[Dict] = None,
reference_system_prompt: Optional[str] = None,
**main_model_kwargs
):
reference_system_prompt = reference_system_prompt or REFERENCE_SYSTEM_PROMPT
system_prompt = system_prompt or SYSTEM_PROMPT
layer_agent = MOAgent._configure_layer_agent(layer_agent_config)
main_agent = MOAgent._create_agent_from_system_prompt(
system_prompt=system_prompt,
model_name=main_model,
**main_model_kwargs
)
return cls(
main_agent=main_agent,
layer_agent=layer_agent,
reference_system_prompt=reference_system_prompt,
cycles=cycles
)
@staticmethod
def _configure_layer_agent(
layer_agent_config: Optional[Dict] = None
) -> RunnableSerializable[Dict, Dict]:
if not layer_agent_config:
layer_agent_config = {
'layer_agent_1' : {'system_prompt': SYSTEM_PROMPT, 'model_name': 'llama3-8b-8192'},
'layer_agent_2' : {'system_prompt': SYSTEM_PROMPT, 'model_name': 'gemma-7b-it'},
'layer_agent_3' : {'system_prompt': SYSTEM_PROMPT, 'model_name': 'mixtral-8x7b-32768'}
}
parallel_chain_map = dict()
for key, value in layer_agent_config.items():
chain = MOAgent._create_agent_from_system_prompt(
system_prompt=value.pop("system_prompt", SYSTEM_PROMPT),
model_name=value.pop("model_name", 'llama3-8b-8192'),
**value
)
parallel_chain_map[key] = RunnablePassthrough() | chain
chain = parallel_chain_map | RunnableLambda(MOAgent.concat_response)
return chain
@staticmethod
def _create_agent_from_system_prompt(
system_prompt: str = SYSTEM_PROMPT,
model_name: str = "llama3-8b-8192",
**llm_kwargs
) -> RunnableSerializable[Dict, str]:
prompt = ChatPromptTemplate.from_messages([
("system", system_prompt),
MessagesPlaceholder(variable_name="messages", optional=True),
("human", "{input}")
])
assert 'helper_response' in prompt.input_variables
llm = ChatGroq(model=model_name, **llm_kwargs)
chain = prompt | llm | StrOutputParser()
return chain
def chat(
self,
input: str,
messages: Optional[List[BaseMessage]] = None,
cycles: Optional[int] = None,
save: bool = True,
output_format: Literal['string', 'json'] = 'string'
) -> Generator[str | ResponseChunk, None, None]:
cycles = cycles or self.cycles
llm_inp = {
'input': input,
'messages': messages or self.chat_memory.load_memory_variables({})['messages'],
'helper_response': ""
}
for cyc in range(cycles):
layer_output = self.layer_agent.invoke(llm_inp)
l_frm_resp = layer_output['formatted_response']
l_resps = layer_output['responses']
llm_inp = {
'input': input,
'messages': self.chat_memory.load_memory_variables({})['messages'],
'helper_response': l_frm_resp
}
if output_format == 'json':
for l_out in l_resps:
yield ResponseChunk(
delta=l_out,
response_type='intermediate',
metadata={'layer': cyc + 1}
)
stream = self.main_agent.stream(llm_inp)
response = ""
for chunk in stream:
if output_format == 'json':
yield ResponseChunk(
delta=chunk,
response_type='output',
metadata={}
)
else:
yield chunk
response += chunk
if save:
self.chat_memory.save_context({'input': input}, {'output': response})