import gradio as gr from huggingface_hub import InferenceClient import os from dotenv import load_dotenv load_dotenv() HF_TOKEN = os.getenv("HF_TOKEN") model_list = ["google/gemma-2-2b-it", "google/gemma-2-9b-it", "google/gemma-2-27b-it"] def respond( message, history: list[tuple[str, str]], model_id, system_message, max_tokens, temperature, top_p, ): client = InferenceClient( model_id, token=HF_TOKEN, ) messages = [{"role": "system", "content": system_message}] for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) messages.append({"role": "user", "content": message}) response = "" for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response gemma_chatbot = gr.ChatInterface( respond, additional_inputs=[ gr.Dropdown( choices=model_list, label="Model", value="google/gemma-2-27b-it", ), gr.Textbox( value="You are a friendly Chatbot.", label="System message" ), gr.Slider( minimum=1, maximum=4096, value=512, step=1, label="Max new tokens" ), gr.Slider( minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature" ), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], )