NotASI's picture
Updated app.py
2495110
raw
history blame
17.1 kB
# """
# References:
# - https://medium.com/@turna.fardousi/building-a-multimodal-chatbot-with-gemini-api-8015bfbee538
# """
# import os
# import time
# from typing import List, Tuple, Optional
# import google.generativeai as genai
# import gradio as gr
# from PIL import Image
# from dotenv import load_dotenv
# load_dotenv()
# GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
# # ============================== Stable - START ==============================
# TITLE = """<h1 align="center">๐ŸŽฎChat with Gemini 1.5๐Ÿ”ฅ -- Beta Preview</h1>"""
# NOTICE = """
# Notices ๐Ÿ“œ:
# - This app is still in development
# - Some features may not work as expected
# """
# ABOUT = """
# Updates (2024-8-12): Created the App
# Info:
# - Model: Gemini 1.5 Flash
# """
# ERRORS = """
# Known errors โš ๏ธ:
# """
# FUTURE_IMPLEMENTATIONS = """
# To be implemented ๐Ÿš€:
# - Select other Gemini / Gemma models
# - Upload files
# - More tools other than web search
# """
# IMAGE_WIDTH = 512
# def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
# return [seq.strip() for seq in stop_sequences.split(",")] if stop_sequences else None
# def preprocess_image(image: Image.Image) -> Image.Image:
# image_height = int(image.height * IMAGE_WIDTH / image.width)
# return image.resize((IMAGE_WIDTH, image_height))
# def user(text_prompt: str, chatbot: List[Tuple[str, str]]):
# return "", chatbot + [[text_prompt, None]]
# def bot(
# google_key: str,
# image_prompt: Optional[Image.Image],
# temperature: float,
# max_output_tokens: int,
# stop_sequences: str,
# top_k: int,
# top_p: float,
# chatbot: List[Tuple[str, str]]
# ):
# google_key = google_key or GEMINI_API_KEY
# if not google_key:
# raise ValueError("GOOGLE_API_KEY is not set. Please set it up.")
# text_prompt = chatbot[-1][0]
# genai.configure(api_key=google_key)
# generation_config = genai.types.GenerationConfig(
# temperature=temperature,
# max_output_tokens=max_output_tokens,
# stop_sequences=preprocess_stop_sequences(stop_sequences),
# top_k=top_k,
# top_p=top_p,
# )
# model_name = "gemini-1.5-flash" # if image_prompt is None else "gemini-pro-vision"
# model = genai.GenerativeModel(model_name)
# inputs = [text_prompt] if image_prompt is None else [text_prompt, preprocess_image(image_prompt)]
# response = model.generate_content(inputs, stream=True, generation_config=generation_config)
# response.resolve()
# chatbot[-1][1] = ""
# for chunk in response:
# for i in range(0, len(chunk.text), 10):
# chatbot[-1][1] += chunk.text[i:i + 10]
# time.sleep(0.01)
# yield chatbot
# google_key_component = gr.Textbox(
# label = "GOOGLE API KEY",
# type = "password",
# placeholder = "...",
# visible = GEMINI_API_KEY is None
# )
# image_prompt_component = gr.Image(
# type = "pil",
# label = "Image"
# )
# chatbot_component = gr.Chatbot(
# # label = 'Gemini',
# bubble_full_width = False
# )
# text_prompt_component = gr.Textbox(
# placeholder = "Chat with Gemini",
# label = "Ask me anything and press Enter"
# )
# run_button_component = gr.Button(
# "Run"
# )
# temperature_component = gr.Slider(
# minimum = 0,
# maximum = 1.0,
# value = 0.5,
# step = 0.05,
# label = "Temperature"
# )
# max_output_tokens_component = gr.Slider(
# minimum = 1,
# maximum = 8192,
# value = 4096,
# step = 1,
# label = "Max Output Tokens"
# )
# stop_sequences_component = gr.Textbox(
# label = "Add stop sequence",
# placeholder = "STOP, END"
# )
# top_k_component = gr.Slider(
# minimum = 1,
# maximum = 40,
# value = 32,
# step = 1,
# label = "Top-K"
# )
# top_p_component = gr.Slider(
# minimum = 0,
# maximum = 1,
# value = 1,
# step = 0.01,
# label = "Top-P"
# )
# user_inputs = [
# text_prompt_component,
# chatbot_component
# ]
# bot_inputs = [
# google_key_component,
# image_prompt_component,
# temperature_component,
# max_output_tokens_component,
# stop_sequences_component,
# top_k_component,
# top_p_component,
# chatbot_component
# ]
# # ============================== Stable - END ==============================
# # ============================== Nightly - START ==============================
# """
# References:
# - https://medium.com/latinxinai/simple-chatbot-gradio-google-gemini-api-4ce02fbaf09f
# """
# GEMINI_API_KEY_NIGHTLY = os.getenv("GEMINI_API_KEY_NIGHTLY")
# model_nightly_name = "gemini-1.5-flash"
# def transform_history(history):
# new_history = []
# for chat in history:
# new_history.append({"parts": [{"text": chat[0]}], "role": "user"})
# new_history.append({"parts": [{"text": chat[1]}], "role": "model"})
# return new_history
# def response(message, history):
# genai.configure(api_key=GEMINI_API_KEY_NIGHTLY)
# model_nightly = genai.GenerativeModel(model_nightly_name)
# global chat
# chat = model_nightly.start_chat(history=[])
# chat.history = transform_history(history)
# response = chat.send_message(message)
# response.resolve()
# for i in range(len(response.text)):
# time.sleep(0.05)
# yield response.text[:i+1]
# # ============================== Nightly - END ==============================
# with gr.Blocks(theme = gr.themes.Soft()) as demo:
# # ============================== Stable - START ==============================
# with gr.Tab("Chat with Gemini 1.5 Flash"):
# gr.HTML(TITLE)
# with gr.Row():
# gr.Markdown(NOTICE)
# gr.Markdown(ABOUT)
# gr.Markdown(ERRORS)
# gr.Markdown(FUTURE_IMPLEMENTATIONS)
# with gr.Column():
# google_key_component.render()
# with gr.Row():
# image_prompt_component.render()
# chatbot_component.render()
# text_prompt_component.render()
# run_button_component.render()
# with gr.Accordion("Parameters", open=False):
# temperature_component.render()
# max_output_tokens_component.render()
# stop_sequences_component.render()
# with gr.Accordion("Advanced", open=False):
# top_k_component.render()
# top_p_component.render()
# run_button_component.click(
# fn = user,
# inputs = user_inputs,
# outputs = [
# text_prompt_component,
# chatbot_component
# ],
# queue = False
# ).then(
# fn = bot,
# inputs = bot_inputs,
# outputs = [
# chatbot_component
# ]
# )
# text_prompt_component.submit(
# fn = user,
# inputs = user_inputs,
# outputs = [
# text_prompt_component,
# chatbot_component
# ],
# queue = False
# ).then(
# fn = bot,
# inputs = bot_inputs,
# outputs = [
# chatbot_component
# ]
# )
# # ============================== Stable - END ==============================
# with gr.Tab("Chat with Gemma 2"):
# gr.HTML(
# """
# <h1 align="center">Still in development</h1>
# """
# )
# # ============================== Nightly - START ==============================
# with gr.Tab("Nightly -- Chat with Gemini 1.5"):
# gr.HTML(
# """
# <h1 align="center">This section will test out the next version of the stable version.</h1>
# """
# )
# gr.ChatInterface(
# response,
# chatbot = gr.Chatbot(height=600),
# title = 'Chat with Gemini 1.5',
# retry_btn = "Retry",
# undo_btn = "Undo",
# clear_btn = "Clear",
# fill_height = True
# )
# # ============================== Nightly - END ==============================
# demo.queue().launch(debug = True, show_error = True)
"""
References:
- https://medium.com/@turna.fardousi/building-a-multimodal-chatbot-with-gemini-api-8015bfbee538
"""
import os
import time
import PIL.Image
from typing import List, Tuple, Optional
import google.generativeai as genai
import gradio as gr
from PIL import Image
from dotenv import load_dotenv
load_dotenv()
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
# ============================== Stable - START ==============================
TITLE = """<h1 align="center">๐ŸŽฎChat with Gemini 1.5๐Ÿ”ฅ -- Beta Preview</h1>"""
NOTICE = """
Notices ๐Ÿ“œ:
- This app is still in development
- Some features may not work as expected
"""
ABOUT = """
Updates (2024-8-12): Created the App
Info:
- Model: Gemini 1.5 Flash
"""
ERRORS = """
Known errors โš ๏ธ:
"""
FUTURE_IMPLEMENTATIONS = """
To be implemented ๐Ÿš€:
- Select other Gemini / Gemma models
- Upload files
- More tools other than web search
"""
IMAGE_WIDTH = 512
def preprocess_stop_sequences(
stop_sequences: str
) -> Optional[List[str]]:
return [seq.strip() for seq in stop_sequences.split(",")] if stop_sequences else None
def preprocess_image(
image: Image.Image
) -> Image.Image:
image_height = int(image.height * IMAGE_WIDTH / image.width)
return image.resize((IMAGE_WIDTH, image_height))
def user(
text_prompt: str,
chatbot: List[Tuple[str, str]]
):
return "", chatbot + [[text_prompt, None]]
def bot(
google_key: str,
image_prompt: Optional[Image.Image],
temperature: float,
max_output_tokens: int,
stop_sequences: str,
top_k: int,
top_p: float,
chatbot: List[Tuple[str, str]]
):
google_key = google_key or GEMINI_API_KEY
if not google_key:
raise ValueError("GOOGLE_API_KEY is not set. Please set it up.")
text_prompt = chatbot[-1][0]
genai.configure(api_key=google_key)
generation_config = genai.types.GenerationConfig(
temperature=temperature,
max_output_tokens=max_output_tokens,
stop_sequences=preprocess_stop_sequences(stop_sequences),
top_k=top_k,
top_p=top_p,
)
model_name = "gemini-1.5-flash"
model = genai.GenerativeModel(model_name)
inputs = [text_prompt] if image_prompt is None else [
text_prompt, preprocess_image(image_prompt)
]
response = model.generate_content(
inputs,
stream=True,
generation_config=generation_config
)
response.resolve()
chatbot[-1][1] = ""
for chunk in response:
for i in range(0, len(chunk.text), 10):
chatbot[-1][1] += chunk.text[i:i + 10]
time.sleep(0.01)
yield chatbot
google_key_component = gr.Textbox(
label="GOOGLE API KEY",
type="password",
placeholder="...",
visible=GEMINI_API_KEY is None
)
image_prompt_component = gr.Image(type="pil", label="Image")
chatbot_component = gr.Chatbot(bubble_full_width=False)
text_prompt_component = gr.Textbox(
placeholder="Chat with Gemini",
label="Ask me anything and press Enter"
)
run_button_component = gr.Button("Run")
temperature_component = gr.Slider(
minimum=0,
maximum=1.0,
value=0.5,
step=0.05,
label="Temperature"
)
max_output_tokens_component = gr.Slider(
minimum=1,
maximum=8192,
value=4096,
step=1,
label="Max Output Tokens"
)
stop_sequences_component = gr.Textbox(
label="Add stop sequence",
placeholder="STOP, END"
)
top_k_component = gr.Slider(
minimum=1,
maximum=40,
value=32,
step=1,
label="Top-K"
)
top_p_component = gr.Slider(
minimum=0,
maximum=1,
value=1,
step=0.01,
label="Top-P"
)
user_inputs = [text_prompt_component, chatbot_component]
bot_inputs = [
google_key_component, image_prompt_component, temperature_component,
max_output_tokens_component, stop_sequences_component, top_k_component,
top_p_component, chatbot_component
]
# ============================== Stable - END ==============================
# ============================== Nightly - START ==============================
"""
References:
- https://medium.com/latinxinai/simple-chatbot-gradio-google-gemini-api-4ce02fbaf09f
"""
GEMINI_API_KEY_NIGHTLY = os.getenv("GEMINI_API_KEY_NIGHTLY")
model_nightly_name = "gemini-1.5-flash"
def transform_history(history):
new_history = []
for user_msg, model_msg in history:
new_history.append({"role": "user", "parts": [{"text": user_msg}]})
new_history.append({"role": "model", "parts": [{"text": model_msg}]})
return new_history
def upload_to_gemini(path, mime_type=None):
file = genai.upload_file(path, mime_type=mime_type)
print(f"Uploaded file '{file.display_name}' as: {file.uri}")
return file.uri
def response(message, history):
message_text = message["text"]
message_files = message["file"]
if message_files and isinstance(message_files, list):
image_uris = [upload_to_gemini(file_path) for file_path in message_files]
message_content = [{"text": message_text}] + image_uris
else:
message_content = {"text": message_text}
genai.configure(api_key=GEMINI_API_KEY_NIGHTLY)
model_nightly = genai.GenerativeModel(
model_nightly_name,
safety_settings=[
{
"category": "HARM_CATEGORY_HARASSMENT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_HATE_SPEECH",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_SEXUALLY_EXPLICIT",
"threshold": "BLOCK_NONE"
},
{
"category": "HARM_CATEGORY_DANGEROUS_CONTENT",
"threshold": "BLOCK_NONE"
},
],
generation_config={
"temperature": 1,
"top_p": 0.95,
"top_k": 64,
"max_output_tokens": 8192,
"response_mime_type": "text/plain",
}
)
global chat
chat = model_nightly.start_chat(history=[])
chat.history = transform_history(history)
response = chat.send_message(message_content)
response.resolve()
for i in range(len(response.text)):
time.sleep(0.05)
yield response.text[:i + 1]
# ============================== Nightly - END ==============================
with gr.Blocks(theme=gr.themes.Soft()) as demo:
# ============================== Stable - START ==============================
with gr.Tab("Chat with Gemini 1.5 Flash"):
gr.HTML(TITLE)
with gr.Row():
gr.Markdown(NOTICE)
gr.Markdown(ABOUT)
gr.Markdown(ERRORS)
gr.Markdown(FUTURE_IMPLEMENTATIONS)
with gr.Column():
google_key_component.render()
with gr.Row():
image_prompt_component.render()
chatbot_component.render()
text_prompt_component.render()
run_button_component.render()
with gr.Accordion("Parameters", open=False):
temperature_component.render()
max_output_tokens_component.render()
stop_sequences_component.render()
with gr.Accordion("Advanced", open=False):
top_k_component.render()
top_p_component.render()
run_button_component.click(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot,
inputs=bot_inputs,
outputs=[chatbot_component]
)
text_prompt_component.submit(
fn=user,
inputs=user_inputs,
outputs=[text_prompt_component, chatbot_component],
queue=False
).then(
fn=bot,
inputs=bot_inputs,
outputs=[chatbot_component]
)
# ============================== Stable - END ==============================
with gr.Tab("Chat with Gemma 2"):
gr.HTML("""<h1 align="center">Still in development</h1>""")
# ============================== Nightly - START ==============================
with gr.Tab("Nightly -- Chat with Gemini 1.5"):
gr.HTML("""<h1 align="center">This section will test out the next version of the stable version.</h1>""")
gr.ChatInterface(
response,
chatbot=gr.Chatbot(height=600),
title='Chat with Gemini 1.5',
retry_btn="Retry",
undo_btn="Undo",
clear_btn="Clear",
fill_height=True,
multimodal=True
)
# ============================== Nightly - END ==============================
demo.queue().launch(debug=True, show_error=True, share=True)