Spaces:
Paused
Paused
File size: 5,446 Bytes
e9e507c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
"""
References:
- https://medium.com/@turna.fardousi/building-a-multimodal-chatbot-with-gemini-api-8015bfbee538
"""
import os
import time
from typing import List, Tuple, Optional
import google.generativeai as genai
import gradio as gr
from PIL import Image
from dotenv import load_dotenv
load_dotenv()
GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
genai.configure(api_key=GEMINI_API_KEY)
TITLE = """<h1 align="center">๐ฎChat with Gemini 1.5๐ฅ -- Beta Preview</h1>"""
NOTICE = """
Notices ๐:
- This app is still in development
- Some features may not work as expected
"""
ABOUT = """
Updates (2024-8-12): Created the App
Info:
- Model: Gemini 1.5 Flash
- Features:
- Langchain integration
- Google search
"""
ERRORS = """
Known errors โ ๏ธ:
"""
FUTURE_IMPLEMENTATIONS = """
To be implemented ๐:
- Select other Gemini / Gemma models
- Upload files
- More tools other than web search
"""
IMAGE_WIDTH = 512
def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
return [seq.strip() for seq in stop_sequences.split(",")] if stop_sequences else None
def preprocess_image(image: Image.Image) -> Image.Image:
image_height = int(image.height * IMAGE_WIDTH / image.width)
return image.resize((IMAGE_WIDTH, image_height))
def user(text_prompt: str, chatbot: List[Tuple[str, str]]):
return "", chatbot + [[text_prompt, None]]
def bot(
google_key: str,
image_prompt: Optional[Image.Image],
temperature: float,
max_output_tokens: int,
stop_sequences: str,
top_k: int,
top_p: float,
chatbot: List[Tuple[str, str]]
):
google_key = google_key or GEMINI_API_KEY
if not google_key:
raise ValueError("GOOGLE_API_KEY is not set. Please set it up.")
text_prompt = chatbot[-1][0]
genai.configure(api_key=google_key)
generation_config = genai.types.GenerationConfig(
temperature=temperature,
max_output_tokens=max_output_tokens,
stop_sequences=preprocess_stop_sequences(stop_sequences),
top_k=top_k,
top_p=top_p,
)
model_name = "gemini-1.5-flash" # if image_prompt is None else "gemini-pro-vision"
model = genai.GenerativeModel(model_name)
inputs = [text_prompt] if image_prompt is None else [text_prompt, preprocess_image(image_prompt)]
response = model.generate_content(inputs, stream=True, generation_config=generation_config)
response.resolve()
chatbot[-1][1] = ""
for chunk in response:
for i in range(0, len(chunk.text), 10):
chatbot[-1][1] += chunk.text[i:i + 10]
time.sleep(0.01)
yield chatbot
google_key_component = gr.Textbox(
label = "GOOGLE API KEY",
type = "password",
placeholder = "...",
visible = GEMINI_API_KEY is None
)
image_prompt_component = gr.Image(
type = "pil",
label = "Image"
)
chatbot_component = gr.Chatbot(
# label = 'Gemini',
bubble_full_width = False
)
text_prompt_component = gr.Textbox(
placeholder = "Chat with Gemini",
label = "Ask me anything and press Enter"
)
run_button_component = gr.Button(
"Run"
)
temperature_component = gr.Slider(
minimum = 0,
maximum = 1.0,
value = 0.5,
step = 0.05,
label = "Temperature"
)
max_output_tokens_component = gr.Slider(
minimum = 1,
maximum = 8192,
value = 4096,
step = 1,
label = "Max Output Tokens"
)
stop_sequences_component = gr.Textbox(
label = "Add stop sequence",
placeholder = "STOP, END"
)
top_k_component = gr.Slider(
minimum = 1,
maximum = 40,
value = 32,
step = 1,
label = "Top-K"
)
top_p_component = gr.Slider(
minimum = 0,
maximum = 1,
value = 1,
step = 0.01,
label = "Top-P"
)
user_inputs = [
text_prompt_component,
chatbot_component
]
bot_inputs = [
google_key_component,
image_prompt_component,
temperature_component,
max_output_tokens_component,
stop_sequences_component,
top_k_component,
top_p_component,
chatbot_component
]
with gr.Blocks() as demo:
gr.HTML(TITLE)
with gr.Row():
gr.Markdown(NOTICE)
gr.Markdown(ABOUT)
gr.Markdown(ERRORS)
gr.Markdown(FUTURE_IMPLEMENTATIONS)
with gr.Column():
google_key_component.render()
with gr.Row():
image_prompt_component.render()
chatbot_component.render()
text_prompt_component.render()
run_button_component.render()
with gr.Accordion("Parameters", open=False):
temperature_component.render()
max_output_tokens_component.render()
stop_sequences_component.render()
with gr.Accordion("Advanced", open=False):
top_k_component.render()
top_p_component.render()
run_button_component.click(
fn = user,
inputs = user_inputs,
outputs = [
text_prompt_component,
chatbot_component
],
queue = False
).then(
fn = bot,
inputs = bot_inputs,
outputs = [
chatbot_component
]
)
text_prompt_component.submit(
fn = user,
inputs = user_inputs,
outputs = [
text_prompt_component,
chatbot_component
],
queue = False
).then(
fn = bot,
inputs = bot_inputs,
outputs = [
chatbot_component
]
)
demo.launch() |