File size: 5,446 Bytes
e9e507c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
"""
References:
- https://medium.com/@turna.fardousi/building-a-multimodal-chatbot-with-gemini-api-8015bfbee538
"""

import os
import time
from typing import List, Tuple, Optional
import google.generativeai as genai
import gradio as gr
from PIL import Image
from dotenv import load_dotenv

load_dotenv()

GEMINI_API_KEY = os.getenv("GEMINI_API_KEY")
genai.configure(api_key=GEMINI_API_KEY)

TITLE = """<h1 align="center">๐ŸŽฎChat with Gemini 1.5๐Ÿ”ฅ -- Beta Preview</h1>"""
NOTICE = """
Notices ๐Ÿ“œ:
- This app is still in development
- Some features may not work as expected
"""
ABOUT = """
Updates (2024-8-12): Created the App

Info:
- Model: Gemini 1.5 Flash
- Features:
    - Langchain integration
    - Google search
"""
ERRORS = """
Known errors โš ๏ธ:
"""
FUTURE_IMPLEMENTATIONS = """
To be implemented ๐Ÿš€:
- Select other Gemini / Gemma models
- Upload files
- More tools other than web search
"""
IMAGE_WIDTH = 512

def preprocess_stop_sequences(stop_sequences: str) -> Optional[List[str]]:
    return [seq.strip() for seq in stop_sequences.split(",")] if stop_sequences else None

def preprocess_image(image: Image.Image) -> Image.Image:
    image_height = int(image.height * IMAGE_WIDTH / image.width)
    return image.resize((IMAGE_WIDTH, image_height))

def user(text_prompt: str, chatbot: List[Tuple[str, str]]):
    return "", chatbot + [[text_prompt, None]]

def bot(
    google_key: str,
    image_prompt: Optional[Image.Image],
    temperature: float,
    max_output_tokens: int,
    stop_sequences: str,
    top_k: int,
    top_p: float,
    chatbot: List[Tuple[str, str]]
):
    google_key = google_key or GEMINI_API_KEY
    if not google_key:
        raise ValueError("GOOGLE_API_KEY is not set. Please set it up.")

    text_prompt = chatbot[-1][0]
    genai.configure(api_key=google_key)
    generation_config = genai.types.GenerationConfig(
        temperature=temperature,
        max_output_tokens=max_output_tokens,
        stop_sequences=preprocess_stop_sequences(stop_sequences),
        top_k=top_k,
        top_p=top_p,
    )

    model_name = "gemini-1.5-flash" # if image_prompt is None else "gemini-pro-vision"
    model = genai.GenerativeModel(model_name)
    inputs = [text_prompt] if image_prompt is None else [text_prompt, preprocess_image(image_prompt)]
    
    response = model.generate_content(inputs, stream=True, generation_config=generation_config)
    response.resolve()

    chatbot[-1][1] = ""
    for chunk in response:
        for i in range(0, len(chunk.text), 10):
            chatbot[-1][1] += chunk.text[i:i + 10]
            time.sleep(0.01)
            yield chatbot

google_key_component = gr.Textbox(
    label = "GOOGLE API KEY",
    type = "password",
    placeholder = "...",
    visible = GEMINI_API_KEY is None
)

image_prompt_component = gr.Image(
    type = "pil",
    label = "Image"
)
chatbot_component = gr.Chatbot(
    # label = 'Gemini',
    bubble_full_width = False
)
text_prompt_component = gr.Textbox(
    placeholder = "Chat with Gemini",
    label = "Ask me anything and press Enter"
)
run_button_component = gr.Button(
    "Run"
)
temperature_component = gr.Slider(
    minimum = 0,
    maximum = 1.0,
    value = 0.5,
    step = 0.05,
    label = "Temperature"
)
max_output_tokens_component = gr.Slider(
    minimum = 1,
    maximum = 8192,
    value = 4096,
    step = 1,
    label = "Max Output Tokens"
)
stop_sequences_component = gr.Textbox(
    label = "Add stop sequence",
    placeholder = "STOP, END"
)
top_k_component = gr.Slider(
    minimum = 1,
    maximum = 40,
    value = 32,
    step = 1,
    label = "Top-K"
)
top_p_component = gr.Slider(
    minimum = 0,
    maximum = 1,
    value = 1,
    step = 0.01,
    label = "Top-P"
)

user_inputs = [
    text_prompt_component,
    chatbot_component
]
bot_inputs = [
    google_key_component,
    image_prompt_component,
    temperature_component,
    max_output_tokens_component,
    stop_sequences_component,
    top_k_component,
    top_p_component,
    chatbot_component
]

with gr.Blocks() as demo:
    gr.HTML(TITLE)
    with gr.Row():
        gr.Markdown(NOTICE)
        gr.Markdown(ABOUT)
        gr.Markdown(ERRORS)
        gr.Markdown(FUTURE_IMPLEMENTATIONS)
    with gr.Column():
        google_key_component.render()
        with gr.Row():
            image_prompt_component.render()
            chatbot_component.render()
        text_prompt_component.render()
        run_button_component.render()
        with gr.Accordion("Parameters", open=False):
            temperature_component.render()
            max_output_tokens_component.render()
            stop_sequences_component.render()
            with gr.Accordion("Advanced", open=False):
                top_k_component.render()
                top_p_component.render()

    run_button_component.click(
        fn = user,
        inputs = user_inputs,
        outputs = [
            text_prompt_component,
            chatbot_component
        ],
        queue = False
    ).then(
        fn = bot,
        inputs = bot_inputs,
        outputs = [
            chatbot_component
        ]
    )
    text_prompt_component.submit(
        fn = user,
        inputs = user_inputs,
        outputs = [
            text_prompt_component,
            chatbot_component
        ],
        queue = False
    ).then(
        fn = bot,
        inputs = bot_inputs,
        outputs = [
            chatbot_component
        ]
    )

demo.launch()