Spaces:
Runtime error
Runtime error
Commit
·
fbd4b06
1
Parent(s):
19890e4
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,144 @@
|
|
|
|
1 |
import gradio as gr
|
|
|
2 |
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
import gradio as gr
|
3 |
+
import torch
|
4 |
|
5 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
|
6 |
+
|
7 |
+
model = AutoModelForCausalLM.from_pretrained("mrm8488/falcoder-7b", trust_remote_code=True)
|
8 |
+
|
9 |
+
description = """# <h1 style="text-align: center; color: white;"><span style='color: #F26207;'> Code Completion with falcoder-7b </h1>
|
10 |
+
<span style="color: white; text-align: center;"> falcoder-7b You can click the button to generate your code.</span>"""
|
11 |
+
|
12 |
+
|
13 |
+
token = os.environ["HUB_TOKEN"]
|
14 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
15 |
+
|
16 |
+
PAD_TOKEN = "<|pad|>"
|
17 |
+
EOS_TOKEN = "<|endoftext|>"
|
18 |
+
UNK_TOKEN = "<|unk|>"
|
19 |
+
MAX_INPUT_TOKENS = 1024 # max tokens from context
|
20 |
+
|
21 |
+
|
22 |
+
tokenizer = AutoTokenizer.from_pretrained(REPO, use_auth_token=token, trust_remote_code=True)
|
23 |
+
tokenizer.truncation_side = "left" # ensures if truncate, then keep the last N tokens of the prompt going L -> R
|
24 |
+
|
25 |
+
if device == "cuda":
|
26 |
+
model = AutoModelForCausalLM.from_pretrained(REPO, use_auth_token=token, trust_remote_code=True, low_cpu_mem_usage=True).to(device, dtype=torch.bfloat16)
|
27 |
+
else:
|
28 |
+
model = AutoModelForCausalLM.from_pretrained(REPO, use_auth_token=token, trust_remote_code=True, low_cpu_mem_usage=True)
|
29 |
+
|
30 |
+
model.eval()
|
31 |
+
|
32 |
+
|
33 |
+
custom_css = """
|
34 |
+
.gradio-container {
|
35 |
+
background-color: #0D1525;
|
36 |
+
color:white
|
37 |
+
}
|
38 |
+
#orange-button {
|
39 |
+
background: #F26207 !important;
|
40 |
+
color: white;
|
41 |
+
}
|
42 |
+
.cm-gutters{
|
43 |
+
border: none !important;
|
44 |
+
}
|
45 |
+
"""
|
46 |
+
|
47 |
+
def post_processing(prompt, completion):
|
48 |
+
return prompt + completion
|
49 |
+
# completion = "<span style='color: #499cd5;'>" + completion + "</span>"
|
50 |
+
# prompt = "<span style='color: black;'>" + prompt + "</span>"
|
51 |
+
# code_html = f"<hr><br><pre style='font-size: 14px'><code>{prompt}{completion}</code></pre><br><hr>"
|
52 |
+
# return code_html
|
53 |
+
|
54 |
+
|
55 |
+
def code_generation(prompt, max_new_tokens, temperature=0.2, seed=42, top_p=0.9, top_k=None, use_cache=True, repetition_penalty=1.0):
|
56 |
+
|
57 |
+
# truncates the prompt to MAX_INPUT_TOKENS if its too long
|
58 |
+
x = tokenizer.encode(prompt, return_tensors="pt", max_length=MAX_INPUT_TOKENS, truncation=True).to(device)
|
59 |
+
print("Prompt shape: ", x.shape) # just adding to see in the space logs in prod
|
60 |
+
set_seed(seed)
|
61 |
+
y = model.generate(x,
|
62 |
+
max_new_tokens=max_new_tokens,
|
63 |
+
temperature=temperature,
|
64 |
+
pad_token_id=tokenizer.pad_token_id,
|
65 |
+
eos_token_id=tokenizer.eos_token_id,
|
66 |
+
top_p=top_p,
|
67 |
+
top_k=top_k,
|
68 |
+
use_cache=use_cache,
|
69 |
+
repetition_penalty=repetition_penalty
|
70 |
+
)
|
71 |
+
completion = tokenizer.decode(y[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
72 |
+
completion = completion[len(prompt):]
|
73 |
+
return post_processing(prompt, completion)
|
74 |
+
|
75 |
+
|
76 |
+
demo = gr.Blocks(
|
77 |
+
css=custom_css
|
78 |
+
)
|
79 |
+
|
80 |
+
with demo:
|
81 |
+
gr.Markdown(value=description)
|
82 |
+
with gr.Row():
|
83 |
+
input_col , settings_col = gr.Column(scale=6), gr.Column(scale=6),
|
84 |
+
with input_col:
|
85 |
+
code = gr.Code(lines=28,label='Input', value="def sieve_eratosthenes(n):")
|
86 |
+
with settings_col:
|
87 |
+
with gr.Accordion("Generation Settings", open=True):
|
88 |
+
max_new_tokens= gr.Slider(
|
89 |
+
minimum=8,
|
90 |
+
maximum=128,
|
91 |
+
step=1,
|
92 |
+
value=48,
|
93 |
+
label="Max Tokens",
|
94 |
+
)
|
95 |
+
temperature = gr.Slider(
|
96 |
+
minimum=0.1,
|
97 |
+
maximum=2.5,
|
98 |
+
step=0.1,
|
99 |
+
value=0.2,
|
100 |
+
label="Temperature",
|
101 |
+
)
|
102 |
+
repetition_penalty = gr.Slider(
|
103 |
+
minimum=1.0,
|
104 |
+
maximum=1.9,
|
105 |
+
step=0.1,
|
106 |
+
value=1.0,
|
107 |
+
label="Repetition Penalty. 1.0 means no penalty.",
|
108 |
+
)
|
109 |
+
seed = gr.Slider(
|
110 |
+
minimum=0,
|
111 |
+
maximum=1000,
|
112 |
+
step=1,
|
113 |
+
label="Random Seed"
|
114 |
+
)
|
115 |
+
top_p = gr.Slider(
|
116 |
+
minimum=0.1,
|
117 |
+
maximum=1.0,
|
118 |
+
step=0.1,
|
119 |
+
value=0.9,
|
120 |
+
label="Top P",
|
121 |
+
)
|
122 |
+
top_k = gr.Slider(
|
123 |
+
minimum=1,
|
124 |
+
maximum=64,
|
125 |
+
step=1,
|
126 |
+
value=4,
|
127 |
+
label="Top K",
|
128 |
+
)
|
129 |
+
use_cache = gr.Checkbox(
|
130 |
+
label="Use Cache",
|
131 |
+
value=True
|
132 |
+
)
|
133 |
+
|
134 |
+
with gr.Row():
|
135 |
+
run = gr.Button(elem_id="orange-button", value="Generate")
|
136 |
+
|
137 |
+
# with gr.Row():
|
138 |
+
# # _, middle_col_row_2, _ = gr.Column(scale=1), gr.Column(scale=6), gr.Column(scale=1)
|
139 |
+
# # with middle_col_row_2:
|
140 |
+
# output = gr.HTML(label="Generated Code")
|
141 |
+
|
142 |
+
event = run.click(code_generation, [code, max_new_tokens, temperature, seed, top_p, top_k, use_cache, repetition_penalty], code, api_name="predict")
|
143 |
+
|
144 |
+
demo.queue(max_size=40).launch()
|