Spaces:
Runtime error
Runtime error
Commit
·
e936a3f
1
Parent(s):
c12c1d4
Update app.py
Browse files
app.py
CHANGED
@@ -1,162 +1,60 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
:param prompt: Input prompt for text generation.
|
23 |
-
:type prompt: str
|
24 |
-
:param max_length: Maximum length of generated text.
|
25 |
-
:type max_length: int
|
26 |
-
:param do_sample: Whether to use sampling for text generation.
|
27 |
-
:type do_sample: bool
|
28 |
-
:param temperature: Sampling temperature for text generation.
|
29 |
-
:type temperature: float
|
30 |
-
:param top_k: Value for top-k sampling.
|
31 |
-
:type top_k: int
|
32 |
-
:param top_p: Value for top-p sampling.
|
33 |
-
:type top_p: float
|
34 |
-
:return: Generated text completion.
|
35 |
-
:rtype: str
|
36 |
-
"""
|
37 |
-
|
38 |
-
# Format prompt
|
39 |
-
formatted_prompt = "\n" + prompt
|
40 |
-
if not ',' in prompt:
|
41 |
-
formatted_prompt += ','
|
42 |
-
|
43 |
-
# Tokenize prompt and move to device
|
44 |
-
prompt = tokenizer(formatted_prompt, return_tensors='pt')
|
45 |
-
prompt = {key: value.to(device) for key, value in prompt.items()}
|
46 |
-
|
47 |
-
# Generate text completion using model and specified parameters
|
48 |
-
out = model.generate(**prompt, max_length=max_length, do_sample=do_sample, temperature=temperature,
|
49 |
-
no_repeat_ngram_size=3, top_k=top_k, top_p=top_p)
|
50 |
-
output = tokenizer.decode(out[0])
|
51 |
-
clean_output = output.replace('\n', '\n')
|
52 |
-
|
53 |
-
# Log generated text completion
|
54 |
-
logger.info("Text generated: %s", clean_output)
|
55 |
-
|
56 |
-
return clean_output
|
57 |
-
|
58 |
-
# Define Gradio interface
|
59 |
-
custom_css = """
|
60 |
-
.gradio-container {
|
61 |
-
background-color: #0D1525;
|
62 |
-
color:white
|
63 |
-
}
|
64 |
-
#orange-button {
|
65 |
-
background: #F26207 !important;
|
66 |
-
color: white;
|
67 |
-
}
|
68 |
-
.cm-gutters{
|
69 |
-
border: none !important;
|
70 |
-
}
|
71 |
-
"""
|
72 |
|
73 |
-
def post_processing(prompt, completion):
|
74 |
-
"""
|
75 |
-
Formats generated text completion for display.
|
76 |
-
|
77 |
-
:param prompt: Input prompt for text generation.
|
78 |
-
:type prompt: str
|
79 |
-
:param completion: Generated text completion.
|
80 |
-
:type completion: str
|
81 |
-
:return: Formatted text completion.
|
82 |
-
:rtype: str
|
83 |
-
"""
|
84 |
-
return prompt + completion
|
85 |
-
|
86 |
-
def code_generation(prompt, max_new_tokens, temperature=0.2, seed=42, top_p=0.9, top_k=None, use_cache=True, repetition_penalty=1.0):
|
87 |
-
"""
|
88 |
-
Generates code completion given a prompt and specified parameters.
|
89 |
-
|
90 |
-
:param prompt: Input prompt for code generation.
|
91 |
-
:type prompt: str
|
92 |
-
:param max_new_tokens: Maximum number of tokens to generate.
|
93 |
-
:type max_new_tokens: int
|
94 |
-
:param temperature: Sampling temperature for code generation.
|
95 |
-
:type temperature: float
|
96 |
-
:param seed: Random seed for code generation.
|
97 |
-
:type seed: int
|
98 |
-
:param top_p: Value for top-p sampling.
|
99 |
-
:type top_p: float
|
100 |
-
:param top_k: Value for top-k sampling.
|
101 |
-
:type top_k: int
|
102 |
-
:param use_cache: Whether to use cache for code generation.
|
103 |
-
:type use_cache: bool
|
104 |
-
:param repetition_penalty: Value for repetition penalty.
|
105 |
-
:type repetition_penalty: float
|
106 |
-
:return: Generated code completion.
|
107 |
-
:rtype: str
|
108 |
-
"""
|
109 |
-
|
110 |
-
# Truncate prompt if too long
|
111 |
-
MAX_INPUT_TOKENS = 2048
|
112 |
-
if len(prompt) > MAX_INPUT_TOKENS:
|
113 |
-
prompt = prompt[-MAX_INPUT_TOKENS:]
|
114 |
-
|
115 |
-
# Tokenize prompt and move to device
|
116 |
-
x = tokenizer.encode(prompt, return_tensors="pt", max_length=MAX_INPUT_TOKENS, truncation=True).to(device)
|
117 |
-
logger.info("Prompt shape: %s", x.shape)
|
118 |
-
|
119 |
-
# Generate code completion using model and specified parameters
|
120 |
-
set_seed(seed)
|
121 |
-
y = model.generate(x,
|
122 |
-
max_new_tokens=max_new_tokens,
|
123 |
-
temperature=temperature,
|
124 |
-
pad_token_id=tokenizer.pad_token_id,
|
125 |
-
eos_token_id=tokenizer.eos_token_id,
|
126 |
-
top_p=top_p,
|
127 |
-
top_k=top_k,
|
128 |
-
use_cache=use_cache,
|
129 |
-
repetition_penalty=repetition_penalty
|
130 |
-
)
|
131 |
-
completion = tokenizer.decode(y[0], skip_special_tokens=True, clean_up_tokenization_spaces=False)
|
132 |
-
completion = completion[len(prompt):]
|
133 |
-
|
134 |
-
return post_processing(prompt, completion)
|
135 |
-
|
136 |
-
description = """
|
137 |
-
### Falcoder
|
138 |
-
|
139 |
-
Falcoder is a GPT-2 model fine-tuned on Python code. It can be used for generating code completions given a prompt.
|
140 |
-
|
141 |
-
### Text Generation
|
142 |
-
|
143 |
-
Use the text generation section to generate text completions given a prompt. You can adjust the maximum length of the generated text, whether to use sampling, the sampling temperature, and the top-k and top-p values for sampling.
|
144 |
-
|
145 |
-
### Code Generation
|
146 |
-
|
147 |
-
Use the code generation section to generate code completions given a prompt. You can adjust the maximum number of tokens to generate, the sampling temperature, the random seed, the top-p and top-k values for sampling, whether to use cache, and the repetition penalty.
|
148 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
|
150 |
-
|
151 |
-
|
152 |
-
["textbox", "textbox"],
|
153 |
-
["textbox", "textbox"],
|
154 |
-
title="Falcoder",
|
155 |
-
description=description,
|
156 |
-
theme="compact",
|
157 |
-
layout="vertical",
|
158 |
-
css=custom_css
|
159 |
-
)
|
160 |
-
|
161 |
-
# Launch Gradio interface
|
162 |
-
demo.launch()
|
|
|
1 |
+
import streamlit as st
|
2 |
+
|
3 |
+
st.title("Falcon QA Bot")
|
4 |
+
|
5 |
+
# import chainlit as cl
|
6 |
+
|
7 |
+
import os
|
8 |
+
huggingfacehub_api_token = st.secrets["hf_token"]
|
9 |
+
|
10 |
+
from langchain import HuggingFaceHub, PromptTemplate, LLMChain
|
11 |
+
|
12 |
+
repo_id = "tiiuae/falcon-7b-instruct"
|
13 |
+
llm = HuggingFaceHub(huggingfacehub_api_token=huggingfacehub_api_token,
|
14 |
+
repo_id=repo_id,
|
15 |
+
model_kwargs={"temperature":0.2, "max_new_tokens":2000})
|
16 |
+
|
17 |
+
template = """
|
18 |
+
You are an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
|
19 |
+
|
20 |
+
{question}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
"""
|
23 |
+
# input = st.text_input("What do you want to ask about", placeholder="Input your question here")
|
24 |
+
|
25 |
+
|
26 |
+
# # @cl.langchain_factory
|
27 |
+
# def factory():
|
28 |
+
# prompt = PromptTemplate(template=template, input_variables=['question'])
|
29 |
+
# llm_chain = LLMChain(prompt=prompt, llm=llm, verbose=True)
|
30 |
+
|
31 |
+
# return llm_chain
|
32 |
+
|
33 |
+
|
34 |
+
prompt = PromptTemplate(template=template, input_variables=["question"])
|
35 |
+
llm_chain = LLMChain(prompt=prompt,verbose=True,llm=llm)
|
36 |
+
|
37 |
+
# result = llm_chain.predict(question=input)
|
38 |
+
|
39 |
+
# print(result)
|
40 |
+
|
41 |
+
def chat(query):
|
42 |
+
# prompt = PromptTemplate(template=template, input_variables=["question"])
|
43 |
+
# llm_chain = LLMChain(prompt=prompt,verbose=True,llm=llm)
|
44 |
+
|
45 |
+
result = llm_chain.predict(question=query)
|
46 |
+
|
47 |
+
return result
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
|
52 |
+
def main():
|
53 |
+
input = st.text_input("What do you want to ask about", placeholder="Input your question here")
|
54 |
+
if input:
|
55 |
+
output = chat(input)
|
56 |
+
st.write(output,unsafe_allow_html=True)
|
57 |
+
|
58 |
|
59 |
+
if __name__ == '__main__':
|
60 |
+
main()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|