Spaces:
Runtime error
Runtime error
Commit
·
2e00c46
1
Parent(s):
77c7c1e
Update app.py
Browse files
app.py
CHANGED
@@ -1,40 +1,63 @@
|
|
1 |
import streamlit as st
|
2 |
-
import time
|
3 |
from queue import Queue
|
|
|
4 |
|
|
|
5 |
st.title("Falcon QA Bot")
|
6 |
|
|
|
7 |
huggingfacehub_api_token = st.secrets["hf_token"]
|
8 |
|
9 |
-
|
10 |
-
|
11 |
repo_id = "tiiuae/falcon-7b-instruct"
|
12 |
-
llm = HuggingFaceHub(huggingfacehub_api_token=huggingfacehub_api_token,
|
13 |
-
repo_id=repo_id,
|
14 |
-
model_kwargs={"temperature":0.2, "max_new_tokens":2000})
|
15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
template = """
|
17 |
You are an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
|
18 |
|
19 |
{question}
|
20 |
-
|
21 |
"""
|
22 |
|
|
|
23 |
queue = Queue()
|
24 |
|
25 |
def chat(query):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
prompt = PromptTemplate(template=template, input_variables=["question"])
|
27 |
-
llm_chain = LLMChain(prompt=prompt,verbose=True,llm=llm)
|
28 |
|
|
|
|
|
|
|
|
|
29 |
result = llm_chain.predict(question=query)
|
30 |
|
31 |
return result
|
32 |
|
33 |
def main():
|
34 |
-
|
35 |
-
|
|
|
|
|
|
|
|
|
|
|
36 |
# Add the user's question to the queue
|
37 |
-
queue.put(
|
38 |
|
39 |
# Check if there are any waiting users
|
40 |
if not queue.empty():
|
@@ -42,10 +65,10 @@ def main():
|
|
42 |
query = queue.get()
|
43 |
|
44 |
# Generate a response to the user's question
|
45 |
-
|
46 |
|
47 |
# Display the response to the user
|
48 |
-
st.write(
|
49 |
|
50 |
if __name__ == '__main__':
|
51 |
-
main()
|
|
|
1 |
import streamlit as st
|
|
|
2 |
from queue import Queue
|
3 |
+
from langchain import HuggingFaceHub, PromptTemplate, LLMChain
|
4 |
|
5 |
+
# Set the title of the Streamlit app
|
6 |
st.title("Falcon QA Bot")
|
7 |
|
8 |
+
# Get the Hugging Face Hub API token from Streamlit secrets
|
9 |
huggingfacehub_api_token = st.secrets["hf_token"]
|
10 |
|
11 |
+
# Set the repository ID for the Falcon model
|
|
|
12 |
repo_id = "tiiuae/falcon-7b-instruct"
|
|
|
|
|
|
|
13 |
|
14 |
+
# Initialize the Hugging Face Hub and LLMChain
|
15 |
+
llm = HuggingFaceHub(
|
16 |
+
huggingfacehub_api_token=huggingfacehub_api_token,
|
17 |
+
repo_id=repo_id,
|
18 |
+
model_kwargs={"temperature": 0.2, "max_new_tokens": 2000}
|
19 |
+
)
|
20 |
+
|
21 |
+
# Define the template for the assistant's response
|
22 |
template = """
|
23 |
You are an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions.
|
24 |
|
25 |
{question}
|
|
|
26 |
"""
|
27 |
|
28 |
+
# Create a queue to store user questions
|
29 |
queue = Queue()
|
30 |
|
31 |
def chat(query):
|
32 |
+
"""
|
33 |
+
Generates a response to the user's question using the LLMChain model.
|
34 |
+
|
35 |
+
:param query: User's question.
|
36 |
+
:type query: str
|
37 |
+
:return: Response to the user's question.
|
38 |
+
:rtype: str
|
39 |
+
"""
|
40 |
+
# Create a prompt template with the question variable
|
41 |
prompt = PromptTemplate(template=template, input_variables=["question"])
|
|
|
42 |
|
43 |
+
# Create an LLMChain instance with the prompt and the Falcon model
|
44 |
+
llm_chain = LLMChain(prompt=prompt, verbose=True, llm=llm)
|
45 |
+
|
46 |
+
# Generate a response to the user's question
|
47 |
result = llm_chain.predict(question=query)
|
48 |
|
49 |
return result
|
50 |
|
51 |
def main():
|
52 |
+
"""
|
53 |
+
Main function for the Streamlit app.
|
54 |
+
"""
|
55 |
+
# Get the user's question from the input text box
|
56 |
+
user_question = st.text_input("What do you want to ask about", placeholder="Input your question here")
|
57 |
+
|
58 |
+
if user_question:
|
59 |
# Add the user's question to the queue
|
60 |
+
queue.put(user_question)
|
61 |
|
62 |
# Check if there are any waiting users
|
63 |
if not queue.empty():
|
|
|
65 |
query = queue.get()
|
66 |
|
67 |
# Generate a response to the user's question
|
68 |
+
response = chat(query)
|
69 |
|
70 |
# Display the response to the user
|
71 |
+
st.write(response, unsafe_allow_html=True)
|
72 |
|
73 |
if __name__ == '__main__':
|
74 |
+
main()
|