Spaces:
Runtime error
Runtime error
import streamlit as st | |
import time | |
from queue import Queue | |
st.title("Falcon QA Bot") | |
huggingfacehub_api_token = st.secrets["hf_token"] | |
from langchain import HuggingFaceHub, PromptTemplate, LLMChain | |
repo_id = "tiiuae/falcon-7b-instruct" | |
llm = HuggingFaceHub(huggingfacehub_api_token=huggingfacehub_api_token, | |
repo_id=repo_id, | |
model_kwargs={"temperature":0.2, "max_new_tokens":2000}) | |
template = """ | |
You are an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. | |
{question} | |
""" | |
queue = Queue() | |
def chat(query): | |
prompt = PromptTemplate(template=template, input_variables=["question"]) | |
llm_chain = LLMChain(prompt=prompt,verbose=True,llm=llm) | |
result = llm_chain.predict(question=query) | |
return result | |
def main(): | |
input = st.text_input("What do you want to ask about", placeholder="Input your question here") | |
if input: | |
# Add the user's question to the queue | |
queue.put(input) | |
# Check if there are any waiting users | |
if not queue.empty(): | |
# Get the next user's question from the queue | |
query = queue.get() | |
# Generate a response to the user's question | |
result = chat(query) | |
# Display the response to the user | |
st.write(result,unsafe_allow_html=True) | |
if __name__ == '__main__': | |
main() |