Norod78's picture
Dicta-IL's dictalm2.0-instruct
3a61ad1 verified
raw
history blame
4.79 kB
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
MAX_MAX_NEW_TOKENS = 1024
DEFAULT_MAX_NEW_TOKENS = 256
MAX_INPUT_TOKEN_LENGTH = 1024
DESCRIPTION = """\
# Dicta-IL's dictalm2.0-instruct
dictalm2.0-instruct was introduced in [this Facebook post](https://www.facebook.com/groups/MDLI1/posts/2704204053076959//).
Please, check the [original model card](https://huggingface.co/dicta-il/dictalm2.0-instruct) and [their official blog post](https://dicta.org.il/dicta-lm) for more details.
You can see the other Hebrew models by Dicta-IL [here](https://huggingface.co/dicta-il)
"""
LICENSE = """
<p/>
---
A derivative work of [mistral-7b](https://mistral.ai/news/announcing-mistral-7b/) by Mistral-AI.
The model and space are released under the Apache 2.0 license
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU ๐Ÿฅถ This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "dicta-il/dictalm2.0-instruct"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", torch_dtype=torch.bfloat16, low_cpu_mem_usage=True)
tokenizer_id = "dicta-il/dictalm2.0-instruct"
tokenizer = AutoTokenizer.from_pretrained(tokenizer_id)
tokenizer.use_default_system_prompt = False
@spaces.GPU
def generate(
message: str,
chat_history: list[tuple[str, str]],
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.4,
) -> Iterator[str]:
conversation = []
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
pad_token_id = tokenizer.eos_token_id,
repetition_penalty=repetition_penalty,
no_repeat_ngram_size=5,
early_stopping=True,
)
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
chat_interface = gr.ChatInterface(
fn=generate,
chatbot=gr.Chatbot(rtl=True, show_copy_button=True),
textbox=gr.Textbox(text_align = 'right', rtl = True),
additional_inputs=[
gr.Slider(
label="Max new tokens",
minimum=1,
maximum=MAX_MAX_NEW_TOKENS,
step=1,
value=DEFAULT_MAX_NEW_TOKENS,
),
gr.Slider(
label="Temperature",
minimum=0.1,
maximum=4.0,
step=0.1,
value=0.3,
),
gr.Slider(
label="Top-p (nucleus sampling)",
minimum=0.05,
maximum=1.0,
step=0.05,
value=0.3,
),
gr.Slider(
label="Top-k",
minimum=1,
maximum=1000,
step=1,
value=30,
),
gr.Slider(
label="Repetition penalty",
minimum=1.0,
maximum=2.0,
step=0.05,
value=1.4,
),
],
stop_btn=None,
examples=[
["ืžืชื›ื•ืŸ ืœืขื•ื’ืช ืฉื•ืงื•ืœื“:"],
["ื”ืฉืœื ืืช ื”ืกื™ืคื•ืจ ื”ืงืฆืจ ื”ื‘ื:\n ื”ืื™ืฉ ื”ืื—ืจื•ืŸ ื‘ืขื•ืœื ื™ืฉื‘ ืœื‘ื“ ื‘ื—ื“ืจื•, ื›ืฉืœืคืชืข ื ืฉืžืขื”"],
["ืžื”ื™ ืฉืคืช ื”ืชื›ื ื•ืช ืคื™ื™ืชื•ืŸ?"],
["ืกื›ื ื‘ืงืฆืจื” ืืช ื”ืขืœื™ืœื” ืฉืœ ืกื™ื ื“ืจืœื”"],
["ืฉืืœื”: ืžื”ื™ ืขื™ืจ ื”ื‘ื™ืจื” ืฉืœ ืžื“ื™ื ืช ื™ืฉืจืืœ?\nืชืฉื•ื‘ื”:"],
["ืฉืืœื”: ืื ื™ ืžืžืฉ ืขื™ื™ืฃ, ืžื” ื›ื“ืื™ ืœื™ ืœืขืฉื•ืช?\nืชืฉื•ื‘ื”:"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
gr.Markdown(LICENSE)
if __name__ == "__main__":
demo.queue(max_size=20).launch()