Doron Adler
commited on
Commit
ยท
edd9b00
1
Parent(s):
4c03781
Proper model and tokenizer caching, some UI/flow fixes
Browse files
app.py
CHANGED
@@ -9,16 +9,19 @@ import random
|
|
9 |
import numpy as np
|
10 |
import torch
|
11 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
12 |
|
13 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
14 |
|
15 |
-
|
|
|
|
|
|
|
16 |
def load_model(model_name):
|
17 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
19 |
return model, tokenizer
|
20 |
|
21 |
-
|
22 |
def extend(input_text, max_size=20, top_k=50, top_p=0.95):
|
23 |
if len(input_text) == 0:
|
24 |
input_text = ""
|
@@ -71,19 +74,16 @@ def extend(input_text, max_size=20, top_k=50, top_p=0.95):
|
|
71 |
parsed_text = "ืฉืืืื"
|
72 |
return parsed_text
|
73 |
|
74 |
-
|
75 |
-
|
76 |
if __name__ == "__main__":
|
77 |
st.title("Hebrew GPT Neo (Small)")
|
78 |
-
|
79 |
-
tokenizer =
|
80 |
-
model = AutoModelForCausalLM.from_pretrained("Norod78/hebrew-gpt_neo-small")
|
81 |
|
82 |
stop_token = "<|endoftext|>"
|
83 |
new_lines = "\n\n\n"
|
84 |
|
85 |
np.random.seed(None)
|
86 |
-
random_seed = np.random.randint(10000,size=1)
|
87 |
|
88 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
89 |
n_gpu = 0 if torch.cuda.is_available()==False else torch.cuda.device_count()
|
@@ -94,24 +94,21 @@ if __name__ == "__main__":
|
|
94 |
|
95 |
model.to(device)
|
96 |
|
97 |
-
st.
|
98 |
-
|
99 |
-
max_len = st.sidebar.slider("Max-Length", 0, 512, 256,help="The maximum length of the sequence to be generated.")
|
100 |
-
top_k = st.sidebar.slider("Top-K", 0, 100, 50, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.")
|
101 |
-
top_p = st.sidebar.slider("Top-P", 0.0, 1.0, 0.95, help="If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.")
|
102 |
|
103 |
-
st.
|
104 |
-
"""Hebrew text generation model based on EleutherAI's gpt-neo. Each was trained on a TPUv3-8 which was made avilable to me via the [TPU Research Cloud Program](https://sites.research.google/trc/). """
|
105 |
-
)
|
106 |
|
107 |
-
|
108 |
-
|
|
|
109 |
|
110 |
-
if st.button("
|
111 |
with st.spinner(text="Generating results..."):
|
112 |
st.subheader("Result")
|
113 |
print(f"device:{device}, n_gpu:{n_gpu}, random_seed:{random_seed}, maxlen:{max_len}, top_k:{top_k}, top_p:{top_p}")
|
114 |
-
|
|
|
|
|
115 |
max_size=int(max_len),
|
116 |
top_k=int(top_k),
|
117 |
top_p=float(top_p))
|
@@ -120,7 +117,10 @@ if __name__ == "__main__":
|
|
120 |
#<div class="rtl" dir="rtl" style="text-align:right;">
|
121 |
st.markdown(f"<p dir=\"rtl\" style=\"text-align:right;\"> {result} </p>", unsafe_allow_html=True)
|
122 |
st.write("\n\nResult length: " + str(len(result)) + " bytes")
|
123 |
-
print(f"\"{result}\"")
|
124 |
|
125 |
-
st.markdown(
|
|
|
|
|
126 |
|
|
|
|
9 |
import numpy as np
|
10 |
import torch
|
11 |
from transformers import AutoTokenizer, AutoModelForCausalLM
|
12 |
+
import tokenizers
|
13 |
|
14 |
+
#os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
15 |
|
16 |
+
random.seed(None)
|
17 |
+
suggested_text_list = ['ืคืขื ืืืช, ืืคื ื ืฉื ืื ืจืืืช','ืฉืืื, ืงืืจืืื ืื ืืืจืื ืืื ื','ืืืงืจ ืืื ืืืืื','ืืื ืืคืจืชื ืืช ืื ืืืื ืืืงืก ืืฉ']
|
18 |
+
|
19 |
+
@st.cache(hash_funcs={tokenizers.Tokenizer: id, tokenizers.AddedToken: id})
|
20 |
def load_model(model_name):
|
21 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
22 |
model = AutoModelForCausalLM.from_pretrained(model_name)
|
23 |
return model, tokenizer
|
24 |
|
|
|
25 |
def extend(input_text, max_size=20, top_k=50, top_p=0.95):
|
26 |
if len(input_text) == 0:
|
27 |
input_text = ""
|
|
|
74 |
parsed_text = "ืฉืืืื"
|
75 |
return parsed_text
|
76 |
|
|
|
|
|
77 |
if __name__ == "__main__":
|
78 |
st.title("Hebrew GPT Neo (Small)")
|
79 |
+
pre_model_path = "Norod78/hebrew-gpt_neo-small"
|
80 |
+
model, tokenizer = load_model(pre_model_path)
|
|
|
81 |
|
82 |
stop_token = "<|endoftext|>"
|
83 |
new_lines = "\n\n\n"
|
84 |
|
85 |
np.random.seed(None)
|
86 |
+
random_seed = np.random.randint(10000,size=1)
|
87 |
|
88 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
89 |
n_gpu = 0 if torch.cuda.is_available()==False else torch.cuda.device_count()
|
|
|
94 |
|
95 |
model.to(device)
|
96 |
|
97 |
+
text_area = st.text_area("Enter the first few words (or leave blank), tap on \"Generate Text\" below. Tapping again will produce a different result.", 'ืืืืฉ ืืืืจืื ืืขืืื ืืฉื ืืื ืืืืจื ืืฉืืคืชืข ื ืฉืืขื ื ืงืืฉื')
|
|
|
|
|
|
|
|
|
98 |
|
99 |
+
st.sidebar.subheader("Configurable parameters")
|
|
|
|
|
100 |
|
101 |
+
max_len = st.sidebar.slider("Max-Length", 0, 256, 192,help="The maximum length of the sequence to be generated.")
|
102 |
+
top_k = st.sidebar.slider("Top-K", 0, 100, 40, help="The number of highest probability vocabulary tokens to keep for top-k-filtering.")
|
103 |
+
top_p = st.sidebar.slider("Top-P", 0.0, 1.0, 0.92, help="If set to float < 1, only the most probable tokens with probabilities that add up to top_p or higher are kept for generation.")
|
104 |
|
105 |
+
if st.button("Generate Text"):
|
106 |
with st.spinner(text="Generating results..."):
|
107 |
st.subheader("Result")
|
108 |
print(f"device:{device}, n_gpu:{n_gpu}, random_seed:{random_seed}, maxlen:{max_len}, top_k:{top_k}, top_p:{top_p}")
|
109 |
+
if len(text_area.strip()) == 0:
|
110 |
+
text_area = random.choice(suggested_text_list)
|
111 |
+
result = extend(input_text=text_area,
|
112 |
max_size=int(max_len),
|
113 |
top_k=int(top_k),
|
114 |
top_p=float(top_p))
|
|
|
117 |
#<div class="rtl" dir="rtl" style="text-align:right;">
|
118 |
st.markdown(f"<p dir=\"rtl\" style=\"text-align:right;\"> {result} </p>", unsafe_allow_html=True)
|
119 |
st.write("\n\nResult length: " + str(len(result)) + " bytes")
|
120 |
+
print(f"\"{result}\"")
|
121 |
|
122 |
+
st.markdown(
|
123 |
+
"""Hebrew text generation model (125M parameters) based on EleutherAI's gpt-neo architecture. Originally trained on a TPUv3-8 which was made avilable to me via the [TPU Research Cloud Program](https://sites.research.google/trc/)."""
|
124 |
+
)
|
125 |
|
126 |
+
st.markdown("<footer><hr><p style=\"font-size:14px\">Enjoy</p><p style=\"font-size:12px\">Created by <a href=\"https://linktr.ee/Norod78\">Doron Adler</a></p></footer> ", unsafe_allow_html=True)
|