ModelTestBatch1 / app.py
NoaiGPT's picture
asd
06ff2b5
raw
history blame
1.23 kB
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import gradio as gr
import spaces
# Load the model and tokenizer
model_name = "NoaiGPT/merged-llama3-8b-instruct-1720894657"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Move model to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Define the prediction function
@spaces.GPU
def generate_text(prompt):
# Tokenize the input and move to GPU if available
inputs = tokenizer(prompt, return_tensors="pt").to(device)
# Generate text using the model
outputs = model.generate(inputs.input_ids, max_length=200, num_return_sequences=1)
# Decode the generated text
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
return generated_text
# Define the Gradio interface
interface = gr.Interface(
fn=generate_text,
inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."),
outputs="text",
title="LLaMA 3 Text Generation",
description="Generate text using the LLaMA 3 model fine-tuned for instruction-following tasks."
)
# Launch the interface
interface.launch()