Spaces:
Sleeping
Sleeping
File size: 1,198 Bytes
06ff2b5 f042b86 3810adf f042b86 06ff2b5 3810adf 06ff2b5 3810adf f042b86 06ff2b5 f042b86 06ff2b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 |
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import gradio as gr
# Load the model and tokenizer
model_name = "NoaiGPT/merged-llama3-8b-instruct-1720894657"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
# Move model to GPU if available
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
# Create a text generation pipeline
text_generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
# Define the prediction function
def generate_text(prompt):
# Generate text using the pipeline
outputs = text_generator(prompt, max_length=200, num_return_sequences=1)
generated_text = outputs[0]["generated_text"]
return generated_text
# Define the Gradio interface
interface = gr.Interface(
fn=generate_text,
inputs=gr.Textbox(lines=2, placeholder="Enter your prompt here..."),
outputs="text",
title="LLaMA 3 Text Generation",
description="Generate text using the LLaMA 3 model fine-tuned for instruction-following tasks."
)
# Launch the interface
interface.launch()
|